PressureDependMultiYield-Example 7

From OpenSeesWiki
Jump to navigation Jump to search




Inclined (4 degrees), dry single BbarBrick element with pressure dependent material


Input File

# Inclined (4 degrees) dry single BbarBrick element with pressure dependent material.
# subjected to 1D sinusoidal base shaking 

wipe
set friction 31.40         ;#friction angle
set phaseTransform 26.50   ;#phase transformation angle
set E1      93178.4        ;#Young's modulus
set poisson1 0.40 ;
set G1 [expr $E1/(2*(1+$poisson1))] ;
set B1 [expr $E1/(3*(1-2*$poisson1))] ;
set gamma    0.600      ;# Newmark integration parameter

set dt   0.01           ;# time step for analysis, does not have to be the same as accDt.
set numSteps 1600       ;# number of time steps
set rhoS  2.00          ;# saturated mass density
set rhoF  0.00          ;# fluid mass density
set densityMult 1.      ;# density multiplier

set Bfluid 2.2e6        ;# fluid shear modulus
set fluid1 1            ;# fluid material tag
set solid1 10           ;# solid material tag

set accMul 7                    ;# acceleration multiplier 
set pi 3.1415926535                     ;
set inclination 4;

set massProportionalDamping   0.0 ;
set InitStiffnessProportionalDamping 0.001;

set bUnitWeightX [expr ($rhoS-$rhoF)*9.81*sin($inclination/180.0*$pi)*$densityMult] ;# buoyant unit weight in X direction
set bUnitWeightY 0.0                                                              ;# buoyant unit weight in Y direction
set bUnitWeightZ [expr -($rhoS-$rhoF)*9.81*cos($inclination/180.0*$pi)]           ;# buoyant unit weight in Z direction

set ndm    3            ;# space dimension

model BasicBuilder -ndm $ndm -ndf $ndm

nDMaterial PressureDependMultiYield $solid1 $ndm [expr $rhoS*$densityMult] $G1 $B1  $friction 0.1 80 0.5 \
                                    $phaseTransform 0.17 0.4 10 10 0.015 1.0 ;#  27 0.6 0 0 0 101 0.630510273

node        1      0.00000     0.0000    0.00000
node        2      0.00000     0.0000    1.00000
node        3      0.00000     1.0000    0.00000
node        4      0.00000     1.0000    1.00000
node        5      1.00000     0.0000    0.00000
node        6      1.00000     0.0000    1.00000
node        7      1.00000     1.0000    0.00000
node        8      1.00000     1.0000    1.00000

element bbarBrick      1      1    5    7    3     2    6    8    4  $solid1 $bUnitWeightX $bUnitWeightY $bUnitWeightZ 

updateMaterialStage -material $solid1 -stage 0

fix      1      1      1      1   0   0   0
fix      2      0      1      0   0   0   0
fix      3      1      1      1   0   0   0
fix      4      0      1      0   0   0   0
fix      5      1      1      1   0   0   0
fix      6      0      1      0   0   0   0
fix      7      1      1      1   0   0   0
fix      8      0      1      0   0   0   0


# equalDOF
# tied nodes around
equalDOF      2     4  1      3
equalDOF      2     6  1      3
equalDOF      2     8  1      3


set nodeList {}
for {set i 1} {$i <=   8 } {incr i 1} {
   lappend nodeList $i
}

set elementList {}
for {set i 1} {$i <=   1 } {incr i 1} {
   lappend elementList $i
}

# GRAVITY APPLICATION (elastic behavior)
# create the SOE, ConstraintHandler, Integrator, Algorithm and Numberer
system ProfileSPD
test NormDispIncr 1.D-10 25 2
constraints Transformation
integrator LoadControl 1 1 1 1
algorithm Newton 
numberer RCM
analysis Static
analyze 2

# switch the material to plastic
updateMaterialStage -material $solid1 -stage 1
updateMaterials -material $solid1 bulkModulus [expr $G1*2/3.];

analyze 2

setTime 0.0 ;# reset time, otherwise reference time is not zero for time history analysis 
wipeAnalysis

############# create recorders       ##############################
eval "recorder Node -file allNodesDisp.out   -time -node $nodeList -dof 1 2 3 -dT 0.01 disp"
eval "recorder Node -file allNodesAcce.out  -time -node $nodeList -dof 1 2 3 -dT 0.01 accel"
eval "recorder Element -ele $elementList -time -file stress1.out -dT 0.01 material 1 stress"
eval "recorder Element -ele $elementList -time -file strain1.out -dT 0.01 material 1 strain"
eval "recorder Element -ele $elementList -time -file stress5.out -dT 0.01 material 5 stress"
eval "recorder Element -ele $elementList -time -file strain5.out -dT 0.01 material 5 strain"
eval "recorder Element -ele $elementList -file backbone.out -dT 1000 material 1 backbone 80 100 200 300"

############# create dynamic time history analysis ##################
pattern UniformExcitation 1 1 -accel "Sine 0 10 1 -factor $accMul"
rayleigh $massProportionalDamping 0.0 $InitStiffnessProportionalDamping 0.
integrator Newmark $gamma  [expr pow($gamma+0.5, 2)/4]  
constraints Penalty 1.e18 1.e18 ;# can't combine with test NormUnbalance   
test NormDispIncr 1.0e-10 25 0   ;# can't combine with constraints Lagrange
#algorithm Newton               ;# tengent is updated at each iteration
algorithm ModifiedNewton        ;# tengent is updated at the begining of each time step not each iteration
system ProfileSPD                ;# Use sparse solver. Next numberer is better to be Plain.
numberer Plain                  ;# method to map between between equation numbers of DOFs
analysis VariableTransient      ;# splitting time step requires VariableTransient

############# perform the Analysis and record time used ############# 
set startT [clock seconds]
analyze $numSteps $dt [expr $dt/64] $dt  15
set endT [clock seconds]
puts "Execution time: [expr $endT-$startT] seconds."


MATLAB Plotting File

clear all;

a1=load('allNodesAcce.out');
d1=load('allNodesDisp.out');
s1=load('stress1.out');
e1=load('strain1.out');
s5=load('stress5.out');
e5=load('strain5.out');

fs=[0.5, 0.2, 4, 6];
accMul = 7;

%integration point 1 p-q
po=(s1(:,2)+s1(:,3)+s1(:,4))/3;
for i=1:size(s1,1)
    qo(i)=(s1(i,2)-s1(i,3))^2 + (s1(i,3)-s1(i,4))^2 +(s1(i,2)-s1(i,4))^2 + 6.0* s1(i,5)^2 + 6.0* s1(i,6)^2 + 6.0* s1(i,7)^2;
    qo(i)=sign(s1(i,7))*1/3.0*qo(i)^0.5;
end
figure(1); clf;
%integration point 1 stress-strain
subplot(2,1,1), plot(e1(:,7),s1(:,7),'r');
title ('Integration point 1 shear stress \tau_x_y VS. shear strain \epsilon_x_y');
xLabel('Shear strain \epsilon_x_y');
yLabel('Shear stress \tau_x_y (kPa)');

subplot(2,1,2), plot(-po,qo,'r');
title ('Integration point 1 confinement p VS. deviatoric q relation');
xLabel('confinement p (kPa)');
yLabel('q (kPa)');
set(gcf,'paperposition',fs);
saveas(gcf,'SS_PQ1','jpg');

%integration point 5 p-q
po=(s5(:,2)+s5(:,3)+s5(:,4))/3;
for i=1:size(s5,1)
    qo(i)=(s5(i,2)-s5(i,3))^2 + (s5(i,3)-s5(i,4))^2 +(s5(i,2)-s5(i,4))^2 + 6.0* s5(i,5)^2 + 6.0* s5(i,6)^2 + 6.0* s5(i,7)^2;
    qo(i)=sign(s5(i,7))*1/3.0*qo(i)^0.5;
end

figure(4); clf;
%integration point 5 stress-strain
subplot(2,1,1), plot(e5(:,7),s5(:,7),'r');
title ('Integration point 5 shear stress \tau_x_y VS. shear strain \epsilon_x_y');
xLabel('Shear strain \epsilon_x_y');
yLabel('Shear stress \tau_x_y (kPa)');

subplot(2,1,2), plot(-po,qo,'r');
title ('Integration point 5 confinement p VS. deviatoric q relation');
xLabel('confinement p (kPa)');
yLabel('q (kPa)');
set(gcf,'paperposition',fs);
saveas(gcf,'SS_PQ5','jpg');

figure(2); clf;
%node 3 displacement relative to node 1
subplot(2,1,1),plot(d1(:,1),d1(:,5),'r');
title ('Lateral displacement at element top');
xLabel('Time (s)');
yLabel('Displacement (m)'); 
set(gcf,'paperposition',fs);
saveas(gcf,'D','jpg');


s=accMul*sin(0:pi/50:20*pi);
s=[s';zeros(1000,1)];
s1=interp1(0:0.01:20,s,a1(:,1));

figure(3); clf;
%node 3 acceleration
subplot(2,1,1),plot(a1(:,1),s1+a1(:,5),'r');
title ('Lateral acceleration at element top');
xLabel('Time (s)');
yLabel('Acceleration (m/s^2)');
set(gcf,'paperposition',fs);
saveas(gcf,'A','jpg');


Displacement Output File


Stress-Strain Output File


Acceleration Output File



Return to: