HDR

From OpenSeesWiki
Revision as of 21:31, 26 May 2014 by Manishkumar (talk | contribs) (Created page with 'This command is used to construct an HDR bearing element object in three-dimension. The 3D continuum geometry of an high damping rubber bearing is modeled as a 2-node, 12 DOF dis...')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

This command is used to construct an HDR bearing element object in three-dimension. The 3D continuum geometry of an high damping rubber bearing is modeled as a 2-node, 12 DOF discrete element. This is the third element in the series of elements developed for analysis of base-isolated structures under extreme loading (others being [ElastomericX] and [LeadRubberX]). The major difference between HDR element with [ElastomericX] and [LeadRubberX] is the hysteresis model in shear. The HDR element uses the model proposed by Grant et al. (2004) to capture the shear behavior of a high damping rubber bearing.

The syntax of command to use this element in a 3D problem:

element ElastomericX $eleTag $Nd1 $Nd2 $qRubber $uh $Gr $Kbulk $D1 $D2 $ts $tr $n $a1 $a2 $a3 $b1 $b2 $b3 $c1 $c2 $c3 $c4 <<$x1 $x2 $x3> $y1 $y2 $y3> <$kc> <$PhiM> <$ac> <$sDratio> <$m> <$cd> <$tc>

$eleTag unique element object tag
$Nd1 $Nd2 end nodes
$qRubber yield strength
$uh yield deformation
$Gr shear modulus of elastomeric bearing
$Kbulk bulk modulus of rubber
$D1 internal diameter
$D2 outer diameter (excluding cover thickness)
$ts single steel shim layer thickness
$tr single rubber layer thickness
$n number of rubber layers
$a1 $a2 $a3 $b1 $b2 $b3 $c1 $c2 $c3 $c4 parameters of Grant model
$x1 $x2 $x3 vector components in global coordinates defining local x-axis (optional)
$y1 $y2 $y3 vector components in global coordinates defining local y-axis (optional)
$kc cavitation parameter (optional, default = 10.0)
$PhiM damage parameter (optional, default = 0.5)
$ac strength reduction parameter (optional, default = 1.0)
$sDratio shear distance from iNode as a fraction of the element length (optional, default = 0.5)
$m element mass (optional, default = 0.0)
$cd viscous damping parameter (optional, default = 0.0)
$tc cover thickness (optional, default = 0.0)

Physical continuum model Discrete spring representation


An example use of this element can be found here: to be updated!


References

  1. Kumar, M., Whittaker, A., and Constantinou, M. (2014). "An advanced numerical model of elastomeric seismic isolation bearings." Earthquake Engineering & Structural Dynamics, Published online, DOI: 10.1002/eqe.2431. Link
  2. Grant, D. N., Fenves, G. L., and Whittaker, A. S. (2004). "Bidirectional modeling of high-damping rubber bearings." Journal of Earthquake Engineering, 8(sup001), 161-185.