Drucker Prager
- Command_Manual
- Tcl Commands
- Modeling_Commands
- model
- uniaxialMaterial
- ndMaterial
- frictionModel
- section
- geometricTransf
- element
- node
- sp commands
- mp commands
- timeSeries
- pattern
- mass
- block commands
- region
- rayleigh
- Analysis Commands
- Output Commands
- Misc Commands
- DataBase Commands
This command is used to construct an multi dimensional material object that has a Drucker-Prager yield criterium.
nDmaterial DruckerPrager $matTag $k $G $sigmaY $rho $rhoBar $Kinf $Ko $delta1 $delta2 $H $theta |
This Code has been Developed by: Peter Mackenzie, U Washington and the great Pedro Arduino, U Washington
$matTag | integer tag identifying material |
$k | bulk modulus |
$G | shear modulus |
$sigmaY | yield stress |
$rho | frictional strength parameter |
$rhoBar | controls evolution of plastic volume change, 0 ≤ $rhoBar ≤ $rho |
$Kinf | nonlinear isotropic strain hardening parameter, $Kinf ≥ 0 |
$Ko | nonlinear isotropic strain hardening parameter, $Ko ≥ 0 |
$delta1 | nonlinear isotropic strain hardening parameter, $delta1 ≥ 0 |
$delta2 | tension softening parameter, $delta2 ≥ 0 |
$H | linear strain hardening parameter, $H ≥ 0 |
$theta | controls relative proportions of isotropic and kinematic hardening, 0 ≤ $theta ≤ 1 |
The material formulations for the Drucker-Prager object are "ThreeDimensional," "PlaneStrain," "Plane Stress," "AxiSymmetric".
THEORY:
The yield condition for the Drucker-Prager model can be expressed as
- <math> f\left(\mathbf{\sigma}, q^{iso}, \mathbf{q}^{kin}\right) = \left\| \mathbf{s} + \mathbf{q}^{kin} \right\| + \rho I_1 + \sqrt{\frac{2}{3}} q^{iso} - \sqrt{\frac{2}{3}} \sigma_Y^{} \leq 0
</math>
in which
- <math> \mathbf{s} = \mathrm{dev} (\mathbf{\sigma}) = \mathbf{\sigma} - \frac{1}{3} I_1 \mathbf{1}
</math>
is the deviatoric stress tensor,
- <math> I_1 = \mathrm{tr}(\mathbf{\sigma})
</math>
is the first invariant of the stress tensor, and the parameters <math>\rho_{}^{}</math> and <math>\sigma_Y^{}</math> are positive material constants.
The isotropic hardening stress is defined as
- <math> q^{iso} = \theta H \alpha^{iso} + (K_{\infty} - K_o) \exp(-\delta_1 \alpha^{iso})
</math>
The kinematic hardening stress (or back-stress) is defined as
- <math> \mathbf{q}^{kin} = -(1 - \theta) \frac{2}{3} H \mathbb{I}^{dev} : \mathbf{\alpha}^{kin}
</math>
The yield condition for the tension cutoff yield surface is defined as
- <math> f_2(\mathbf{\sigma}, q^{ten}) = I_1 + q^{ten} \leq 0
</math>
where
- <math> q^{ten} = T_o \exp(-\delta_2^{} \alpha^{ten})
</math>
and
- <math> T_o = \sqrt{\frac{2}{3}} \frac{\sigma_Y}{\rho}
</math>
Further, general, information on theory for the Drucker-Prager yield criterion can be found at wikipedia here
EXAMPLE
An example like ZeroLengthContactNTS2D would be nice
REFERENCES;
Drucker, D. C. and Prager, W., "Soil mechanics and plastic analysis for limit design. Quarterly of Applied Mathematics, vol. 10, no. 2, pp. 157–165, 1952.