ZeroLengthImpact3D
- Command_Manual
- Tcl Commands
- Modeling_Commands
- model
- uniaxialMaterial
- ndMaterial
- frictionModel
- section
- geometricTransf
- element
- node
- sp commands
- mp commands
- timeSeries
- pattern
- mass
- block commands
- region
- rayleigh
- Analysis Commands
- Output Commands
- Misc Commands
- DataBase Commands
This command constructs a node-to-node zero-length contact element in 3D space.
element zeroLengthImpact3D $tag $slaveNode $masterNode $direction $initGap $frictionRatio $Kt $Kn $Kn2 $Delta_y $cohesion |
$tag | Unique element object tag |
$slaveNode | Slave node tag |
$masterNode | Master node tag |
$direction |
1 if out-normal vector of master plane points to +X direction 2 if out-normal vector of master plane points to +Y direction 3 if out-normal vector of master plane points to +Z direction |
$initGap | Initial gap between master plane and slave plane |
$frictionRatio | Friction ratio |
$Kt | Penalty in two tangential directions (parallel to master and slave planes) |
$Kn | Penalty in normal direction (normal to master and slave planes) |
$Kn2 | Penalty in normal direction after yielding based on Hertz impact model |
$Delta_y | Yield deformation based on Hertz impact model |
$cohesion | Cohesion, if no cohesion, it is zero |
NOTES:
- This element has been developed on top of the “zeroLengthContact3D”. All the notes available in “zeroLengthContact3D” wiki page would apply to this element as well. It includes the definition of master and slave nodes, the number of degrees of freedom in the domain, etc.
- This element adds the capabilities of “ImpactMaterial” to “zeroLengthContact3D” .
- For simulating a surface-to-surface contact, this element can be defined for connecting the nodes on slave surface to the nodes on master surface.
- This element was found to be fast-converging and eliminating the need for extra elements and nodes in the modeling process.
EXAMPLE: The following zip file contains an example script and the corresponding input cyclic displacement: File:ExampleScript1.zip
REFERENCES: zeroLengthContact3D , ImpactMaterial
Code Developed by: Dr. A.E. Zaghi, M. Cashany @ University of Connecticut (UConn)
APPLICATION:
- This element has been employed to simulate the bridge hinges including superstructure-abutment interaction at University of Connecticut (UConn) and University of Nevada, Reno (UNR).
- This element has also been implemented in non-structural systems simulation where there is impact/pounding phenomenon.