Drucker Prager

From OpenSeesWiki
Revision as of 21:12, 1 February 2010 by Mcganncr (talk | contribs)
Jump to navigation Jump to search

This command is used to construct an multi dimensional material object that has a Drucker-Prager yield criterium.

nDmaterial DruckerPrager $matTag $k $G $sigmaY $rho $rhoBar $Kinf $Ko $delta1 $delta2 $H $theta




This Code has been Developed by: Peter Mackenzie, U Washington and the great Pedro Arduino, U Washington



$matTag integer tag identifying material
$k bulk modulus
$G shear modulus
$sigmaY yield stress
$rho frictional strength parameter
$rhoBar non-associative parameter
$Kinf nonlinear isotropic strain hardening parameter
$Ko nonlinear isotropic strain hardening parameter
$delta1 nonlinear isotropic strain hardening parameter
$delta2 tension softening parameter
$H linear kinematic strain hardening parameter
$theta linear kinematic strain hardening parameter

The material formulations for the Drucker-Prager object are "ThreeDimensional," "PlaneStrain," "Plane Stress," "AxiSymmetric".


EXAMPLE

An example like ZeroLengthContactNTS2D would be nice


THEORY:

The theory for the Drucker-Prager yield criterion can be found at wikipedia here

The the isotropic hardening modulus is defined using the indicated input paramaters as

<math> K^\prime (\alpha_1) = \theta H + (K_{\infty} - K_o) \delta_1 \exp(-\delta_1 \alpha_1) </math>

and the kinematic hardening modulus is defined as

<math> H^\prime(\alpha_1) = (1 - \theta) H </math>

Tension softening is defined as

<math> T (\alpha_2) = T_o \exp(-\delta_2 \alpha_2) </math>

in which

<math> T_o = \sqrt{\frac{2}{3}} \frac{\sigma_Y}{\rho} </math>

defines the tension cutoff surface.


REFERENCES;

Drucker, D. C. and Prager, W., "Soil mechanics and plastic analysis for limit design. Quarterly of Applied Mathematics, vol. 10, no. 2, pp. 157–165, 1952.