Drucker Prager: Difference between revisions

From OpenSeesWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 37: Line 37:
|  '''$H ''' || linear kinematic strain hardening parameter
|  '''$H ''' || linear kinematic strain hardening parameter
|-
|-
|  '''$theta ''' || linear kinematic strain hardening parameter
|  '''$theta ''' || strain hardening proportion parameter
|-
|-
|}
|}
Line 55: Line 55:
The theory for the Drucker-Prager yield criterion can be found at wikipedia [http://en.wikipedia.org/wiki/Drucker_Prager_yield_criterion here]
The theory for the Drucker-Prager yield criterion can be found at wikipedia [http://en.wikipedia.org/wiki/Drucker_Prager_yield_criterion here]


The the isotropic hardening modulus is defined using the indicated input paramaters as
The the nonlinear isotropic hardening term in the Drucker-Prager yield function is defined as


<math> K^\prime (\alpha_1) = \theta H + (K_{\infty} - K_o) \delta_1 \exp(-\delta_1 \alpha_1)
<math> K (\alpha_1) = \sigma_Y + \theta H \alpha + (K_{\infty} - K_o) \exp(-\delta_1 \alpha_1)</math>
</math>


and the kinematic hardening modulus is defined as
The kinematic strain hardening is defined as


<math> H^\prime(\alpha_1) = (1 - \theta) H
<math> H(\alpha_1) = (1 - \theta) H</math>
</math>


Tension softening is defined as
Tension softening is defined as


<math> T (\alpha_2) = T_o \exp(-\delta_2 \alpha_2)
<math> T(\alpha_2) = T_o \exp(-\delta_2 \alpha_2)</math>
</math>


in which  
in which  


<math> T_o = \sqrt{\frac{2}{3}} \frac{\sigma_Y}{\rho}
<math> T_o = \sqrt{\frac{2}{3}} \frac{\sigma_Y}{\rho}</math>
</math>


defines the tension cutoff surface.
defines the tension cutoff surface.

Revision as of 01:17, 2 February 2010

This command is used to construct an multi dimensional material object that has a Drucker-Prager yield criterium.

nDmaterial DruckerPrager $matTag $k $G $sigmaY $rho $rhoBar $Kinf $Ko $delta1 $delta2 $H $theta




This Code has been Developed by: Peter Mackenzie, U Washington and the great Pedro Arduino, U Washington



$matTag integer tag identifying material
$k bulk modulus
$G shear modulus
$sigmaY yield stress
$rho frictional strength parameter
$rhoBar non-associative parameter
$Kinf nonlinear isotropic strain hardening parameter
$Ko nonlinear isotropic strain hardening parameter
$delta1 nonlinear isotropic strain hardening parameter
$delta2 tension softening parameter
$H linear kinematic strain hardening parameter
$theta strain hardening proportion parameter

The material formulations for the Drucker-Prager object are "ThreeDimensional," "PlaneStrain," "Plane Stress," "AxiSymmetric".


EXAMPLE

An example like ZeroLengthContactNTS2D would be nice


THEORY:

The theory for the Drucker-Prager yield criterion can be found at wikipedia here

The the nonlinear isotropic hardening term in the Drucker-Prager yield function is defined as

<math> K (\alpha_1) = \sigma_Y + \theta H \alpha + (K_{\infty} - K_o) \exp(-\delta_1 \alpha_1)</math>

The kinematic strain hardening is defined as

<math> H(\alpha_1) = (1 - \theta) H</math>

Tension softening is defined as

<math> T(\alpha_2) = T_o \exp(-\delta_2 \alpha_2)</math>

in which

<math> T_o = \sqrt{\frac{2}{3}} \frac{\sigma_Y}{\rho}</math>

defines the tension cutoff surface.


REFERENCES;

Drucker, D. C. and Prager, W., "Soil mechanics and plastic analysis for limit design. Quarterly of Applied Mathematics, vol. 10, no. 2, pp. 157–165, 1952.