ConfinedConcrete01 Material: Difference between revisions
(Created page with 'This command is used to construct a ConfinedConcrete01 concrete material object. {| | style="background:yellow; color:black; width:800px" | '''uniaxialMaterial ConfinedConcret…') |
No edit summary |
||
Line 3: | Line 3: | ||
{| | {| | ||
| style="background:yellow; color:black; width:800px" | '''uniaxialMaterial ConfinedConcrete01 $tag $secType $fpc $Ec | | style="background:yellow; color:black; width:800px" | '''uniaxialMaterial ConfinedConcrete01 $tag $secType $fpc $Ec (<-epscu $epscu> OR <-gamma $gamma>) (<-nu $nu> OR <-varub> OR <-varnoub>) $2L ($a) ($b) $phis $S $fyh $Es0 $haRatio $mu $phiLon <-internal $phisi $Si $fyhi $Es0i $haRatioi $mui> <-wrap $cover $Am $Sw $fuil $Es0w> <-gravel> <-silica> <-tol $tol> <-maxNumIter $maxNumIter> <-epscuLimit $epscuLimit> <-stRatio $stRatio>''' | ||
(<-epscu $epscu> OR <-gamma $gamma>) | |||
(<-nu $nu> OR <-varub> OR <-varnoub>) | |||
$2L ($a) ($b) $phis $S $fyh $Es0 $haRatio $mu | |||
$phiLon | |||
<-internal $phisi $Si $fyhi $Es0i $haRatioi $mui> | |||
<-wrap $cover $Am $Sw $fuil $Es0w> | |||
<-gravel> <-silica> | |||
<-tol $tol> | |||
<-maxNumIter $maxNumIter> | |||
<-epscuLimit $epscuLimit> | |||
<-stRatio $stRatio>''' | |||
|} | |} | ||
Revision as of 23:56, 11 January 2010
This command is used to construct a ConfinedConcrete01 concrete material object.
uniaxialMaterial ConfinedConcrete01 $tag $secType $fpc $Ec (<-epscu $epscu> OR <-gamma $gamma>) (<-nu $nu> OR <-varub> OR <-varnoub>) $2L ($a) ($b) $phis $S $fyh $Es0 $haRatio $mu $phiLon <-internal $phisi $Si $fyhi $Es0i $haRatioi $mui> <-wrap $cover $Am $Sw $fuil $Es0w> <-gravel> <-silica> <-tol $tol> <-maxNumIter $maxNumIter> <-epscuLimit $epscuLimit> <-stRatio $stRatio> |
$tag | integer tag identifying material |
$secType | tag for the transverse reinforcement configurations. See NOTES 1. |
$fpc | nconfined cylindrical strength of concrete specimen. |
$Ec | initial elastic modulus of unconfined concrete. |
$epscu | confined concrete ultimate strain. See NOTES 2. |
$gamma | value betwwen 0 and 1.0. See NOTES 2. |
$nu | Poissons Ratio. |
$2L | concrete core dimension of square section or diameter of concrete core section measured respect to the hoop center line. |
$a | dimensions of multiple hoops for S4a section type measured respect to hoop center line. |
$b | dimensions of multiple hoops for S4a and S4b section types measured respect to hoop center line.
|
NOTES:
1) The following section types are available:
S1 | square section with S1 type of transverse reinforcement with or without external FRP wrapping; |
S2 | square section with S2 type of transverse reinforcement with or without external FRP wrapping; |
S3 | square section with S3 type of transverse reinforcement with or without external FRP wrapping; |
S4a | square section with S4a type of transverse reinforcement with or without external FRP wrapping; |
S4b | square section with S4b type of transverse reinforcement with or without external FRP wrapping; |
S5 | square section with S5 type of transverse reinforcement with or without external FRP wrapping; |
C | circular section with or without external FRP wrapping; |
R | rectangular section with or without external FRP wrapping. |
2) The confined concrete ultimate strain is defined using -epscu or -gamma. If -gamma option, $gamma specified is the ratio of the strength corresponding to ultimate strain to the peak strength of the confined concrete stress-strain curve. If $gamma cannot be achieved in the range [0, $epscuLimit] then $epscuLimit (optional, default: 0.05) will be assumed as ultimate strain.
3) Poissons Ratio is specified by one of 3 methods: a)providing $nu using the -nu option. b)using the -varUB option in which Poisson’s ratio is defined as a function of axial strain by means of the expression proposed by Braga et al. (2006) with the upper bond equal to 0.5; or c) using the -varNoUB option in which case Poisson’s ratio is defined as a function of axial strain by means of the expression proposed by Braga et al. (2006) without any upper bond.
REFEERENCES:
- Attard, M. M., Setunge, S., 1996. “Stress-strain relationship of confined and unconfined concrete”. Material Journal ACI, 93(5), 432-444
- Braga, F., Gigliotti, R., Laterza, M., 2006. “Analytical stress-strain relationship for concrete confined by steel stirrups and/or FRP jackets”. Journal of Structural Engineering ASCE, 132(9), 1402-1416.
- D’Amato M., February 2009. “Analytical models for non linear analysis of RC structures: confined concrete and bond-slips of longitudinal bars”. Doctoral Thesis. University of Basilicata, Potenza, Italy.
- Karsan, I. D., Jirsa, J. O., 1969. “Behavior of concrete under compressive loadings”, Journal of Structural Division ASCE, 95(12), 2543-2563.
Code Developed by: Michele D'Amato, University of Basilicata, Italy