BWBN Material: Difference between revisions
Jump to navigation
Jump to search
(Created page with '{{CommandManualMenu}} This command is used to construct a uniaxial Bouc-Wen smooth hysteretic material object that incorporates pinching. {| | style="background:yellow; color...') |
No edit summary |
||
Line 30: | Line 30: | ||
REFERENCES: | REFERENCES: | ||
Raquibul Hossain, Mahmud Ashraf, Jamie E. Padgett(2013). "Risk-based seismic performance assessment of Yielding Shear Panel Device", Engineering Structures, Volume 56, November 2013, Pages 1570–1579 | |||
DEVELOPED BY: | |||
Raquibul Hossain, The University of Queensland, Australia |
Revision as of 23:07, 4 October 2013
- Command_Manual
- Tcl Commands
- Modeling_Commands
- model
- uniaxialMaterial
- ndMaterial
- frictionModel
- section
- geometricTransf
- element
- node
- sp commands
- mp commands
- timeSeries
- pattern
- mass
- block commands
- region
- rayleigh
- Analysis Commands
- Output Commands
- Misc Commands
- DataBase Commands
This command is used to construct a uniaxial Bouc-Wen smooth hysteretic material object that incorporates pinching.
uniaxialMaterial BWBN $matTag $alpha $ko $n $gamma $beta $Ao $q $zetas $p $Shi $deltaShi $lambda $tol $maxIter |
$matTag | integer tag identifying material |
$alpha | ratio of post-yield stiffness to the initial elastic stiffenss (0< <math>\alpha</math> <1) |
$ko | initial elastic stiffness |
$n | parameter that controls transition from linear to nonlinear range (as n increases the transition becomes sharper; n is usually grater or equal to 1) |
$gamma $beta | parameters that control shape of hysteresis loop; depending on the values of <math>\gamma</math> and <math>\beta</math> softening, hardening or quasi-linearity can be simulated (look at the NOTES) |
$Ao | parameters that control tangent stiffness |
NOTES:
REFERENCES:
Raquibul Hossain, Mahmud Ashraf, Jamie E. Padgett(2013). "Risk-based seismic performance assessment of Yielding Shear Panel Device", Engineering Structures, Volume 56, November 2013, Pages 1570–1579
DEVELOPED BY: Raquibul Hossain, The University of Queensland, Australia