Modified Ibarra-Medina-Krawinkler Deterioration Model with Pinched Hysteretic Response (ModIMKPinching Material): Difference between revisions

From OpenSeesWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:


{|  
{|  
| style="background:yellow; color:black; width:800px" | '''uniaxialMaterial ModIMKPinching  $matTag  $K0  $as_Plus  $as_Neg  $My_Plus  $My_Neg  $FprPos $FprNeg $A_pinch $Lamda_S  $Lamda_K  $Lamda_A  $Lamda_C $c_S  $c_K $c_A  $c_C $theta_p_Plus  $theta_p_Neg  $theta_pc_Plus  $theta_pc_Neg  $Res_Pos  $Res_Neg  $theta_u_Plus  $theta_u_Neg  $D_Plus  $D_Neg'''
| style="background:yellow; color:black; width:800px" | '''uniaxialMaterial ModIMKPinching  $matTag  $K0  $as_Plus  $as_Neg  $My_Plus  $My_Neg  $FprPos $FprNeg $A_pinch $Lamda_S  $Lamda_C $Lamda_A  $Lamda_K $c_S  $c_C $c_A  $c_K $theta_p_Plus  $theta_p_Neg  $theta_pc_Plus  $theta_pc_Neg  $Res_Pos  $Res_Neg  $theta_u_Plus  $theta_u_Neg  $D_Plus  $D_Neg'''
|}
|}



Revision as of 16:53, 10 September 2012




This command is used to construct a ModIMKPinching material. This material simulates the modified Ibarra-Medina-Krawinkler deterioration model with pinching hysteretic response. NOTE: before you use this material make sure that you have downloaded the latest OpenSees version. A youtube video presents a summary of this model including the way to be used within openSees (http://youtu.be/YHBHQ-xuybE).

uniaxialMaterial ModIMKPinching $matTag $K0 $as_Plus $as_Neg $My_Plus $My_Neg $FprPos $FprNeg $A_pinch $Lamda_S $Lamda_C $Lamda_A $Lamda_K $c_S $c_C $c_A $c_K $theta_p_Plus $theta_p_Neg $theta_pc_Plus $theta_pc_Neg $Res_Pos $Res_Neg $theta_u_Plus $theta_u_Neg $D_Plus $D_Neg

$matTag integer tag identifying material
$K0 elastic stiffness
$as_Plus strain hardening ratio for positive loading direction
$as_Neg strain hardening ratio for negative loading direction
$My_Plus effective yield strength for positive loading direction
$My_Neg effective yield strength for negative loading direction (Must be defined as a negative value)
$FprPos Ratio of the force at which reloading begins to force corresponding to the maximum historic deformation demand (positive loading direction)
$FprNeg Ratio of the force at which reloading begins to force corresponding to the absolute maximum historic deformation demand (negative loading direction)
$A_Pinch Ratio of reloading stiffness
$Lamda_S Cyclic deterioration parameter for strength deterioration [see definitions in Lignos and Krawinkler (2011)]
$Lamda_C Cyclic deterioration parameter for post-capping strength deterioration [see definitions in Lignos and Krawinkler (2011)]
$Lamda_A Cyclic deterioration parameter for acceleration reloading stiffness deterioration [see definitions in Lignos and Krawinkler (2011)]
$Lamda_K Cyclic deterioration parameter for unloading stiffness deterioration [see definitions in Lignos and Krawinkler (2011)]
$c_S rate of strength deterioration. The default value is 1.0.
$c_C rate of post-capping strength deterioration. The default value is 1.0.
$c_A rate of accelerated reloading deterioration. The default value is 1.0.
$c_K rate of unloading stiffness deterioration. The default value is 1.0.
$theta_p_Plus pre-capping rotation for positive loading direction (often noted as plastic rotation capacity)
$theta_p_Neg pre-capping rotation for negative loading direction (often noted as plastic rotation capacity) (must be defined as a positive value)
$theta_pc_Plus post-capping rotation for positive loading direction
$theta_pc_Neg post-capping rotation for negative loading direction (must be defined as a positive value)
$Res_Pos residual strength ratio for positive loading direction
$Res_Neg residual strength ratio for negative loading direction (must be defined as a positive value)
$theta_u_Plus ultimate rotation capacity for positive loading direction
$theta_u_Neg ultimate rotation capacity for negative loading direction (must be defined as a positive value)
$D_Plus rate of cyclic deterioration in the positive loading direction (this parameter is used to create assymetric hysteretic behavior for the case of a composite beam). For symmetric hysteretic response use 1.0.
$D_Neg rate of cyclic deterioration in the negative loading direction (this parameter is used to create assymetric hysteretic behavior for the case of a composite beam). For symmetric hysteretic response use 1.0.


Image from: Lignos and Krawinkler (2012)

The deterioration model parameters can be calibrated based on actual experimental data of RC beams in terms of load - displacement or moment - rotation. Examples of such calibrations can be found in Lignos (2008) and Lignos and Krawinkler (2012).


References:

[1] Lignos, D.G., Krawinkler, H. (2012). “Development and Utilization of Structural Component Databases for Performance-Based Earthquake Engineering", Journal of Structural Engineering, ASCE (accepted for publication).
[2] Lignos, D.G., and Krawinkler, H. (2011). “Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading”, Journal of Structural Engineering, ASCE, Vol. 137 (11), 1291-1302.
[3] Lignos, D.G. and Krawinkler, H. (2012). “Sidesway collapse of deteriorating structural systems under seismic excitations,” Rep.No.TB 177, The John A. Blume Earthquake Engineering Research Center, Stanford University, Stanford, CA. [electronic version: https://blume.stanford.edu/tech_reports]
[4] Lignos, D.G. (2008). “Sidesway collapse of deteriorating structural systems under seismic excitations,” Ph.D. Dissertation, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA.
[5] Ibarra L.F., and Krawinkler, H. (2005). “Global collapse of frame structures under seismic excitations”, Rep. No. TB 152, The John A. Blume Earthquake Engineering Center, Stanford University, Stanford, CA. [electronic version: https://blume.stanford.edu/tech_reports]
[6] Ibarra L.F., Medina R. A., and Krawinkler H. (2005). “Hysteretic models that incorporate strength and stiffness deterioration”, Earthquake Engineering and Structural Dynamics, 34(12), 1489-1511.

Code Developed by : by Dr. Dimitrios G. Lignos, McGill University