Linear Transformation: Difference between revisions
(New page: This command is used to construct a linear coordinate transformation (LinearCrdTransf) object, which performs a linear geometric transformation of beam stiffness and resisting force from t...) |
No edit summary |
||
Line 37: | Line 37: | ||
[[Image:ElementOrentation.gif]] | [[Image:ElementOrentation.gif]] | ||
[[Image:RigidElementOffsets.gif]] | [[Image:RigidElementOffsets.gif]] | ||
---- | |||
EXAMPLE: | |||
[[Image:ElementCrossSection.png]] | [[Image:ElementCrossSection.png]] | ||
[[Image:ElementOrientation.png]] | [[Image:ElementOrientation.png]] | ||
[[Image:ElementVectors.png]] | [[Image:ElementVectors.png]] | ||
#Element 1 : tag 1 : vecxZ = zaxis | |||
geomTransf Linear 1 0 0 -1 | |||
#Element 2 : tag 2 : vecxZ = y axis | |||
geomTransf Linear 2 0 1 0 | |||
Code Developed by: <span style="color:blue"> fmk </span> | Code Developed by: <span style="color:blue"> fmk </span> |
Revision as of 18:14, 25 September 2009
This command is used to construct a linear coordinate transformation (LinearCrdTransf) object, which performs a linear geometric transformation of beam stiffness and resisting force from the basic system to the global-coordinate system.
For a two-dimensional problem:
geomTransf Linear $transfTag <-jntOffset $dXi $dYi $dXj $dYj> |
For a three-dimensional problem:
geomTransf Linear $transfTag $vecxzX $vecxzY $vecxzZ <-jntOffset $dXi $dYi $dZi $dXj $dYj $dZj> |
$transfTag | integer tag identifying transformation |
$vecxzX $vecxzY $vecxzZ | X, Y, and Z components of vecxz, the vector used to define the local x-z plane of the local-coordinate system. The local y-axis is defined by taking the cross product of the vecxz vector and the x-axis.
These components are specified in the global-coordinate system X,Y,Z and define a vector that is in a plane parallel to the x-z plane of the local-coordinate system. These items need to be specified for the three-dimensional problem. |
$dXi $dYi $dZi | joint offset values -- absolute offsets specified with respect to the global coordinate system for element-end node i (the number of arguments depends on the dimensions of the current model) (optional) |
$dXj $dYj $dZj | joint offset values -- absolute offsets specified with respect to the global coordinate system for element-end node j (the number of arguments depends on the dimensions of the current model) (optional) |
The element coordinate system is specified as follows:
The x-axis is the axis connecting the two element nodes; the y- and z-axes are then defined using a vector that lies on a plane parallel to the local x-z plane -- vecxz. The local y-axis is defined by taking the cross product of the vecxz vector and the x-axis.. The section is attached to the element such that the y-z coordinate system used to specify the section corresponds to the y-z axes of the element.
EXAMPLE:
- Element 1 : tag 1 : vecxZ = zaxis
geomTransf Linear 1 0 0 -1
- Element 2 : tag 2 : vecxZ = y axis
geomTransf Linear 2 0 1 0
Code Developed by: fmk