BandSPD SOE: Difference between revisions

From OpenSeesWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 48: Line 48:
</math>
</math>


:<math>
\begin{bmatrix}
B_{11} & B_{12} & 0      & \cdots & \cdots & 0 \\
B_{21} & B_{22} & B_{23} & \ddots & \ddots & \vdots \\
  0    & B_{32} & B_{33} & B_{34} & \ddots & \vdots \\
\vdots & \ddots & B_{43} & B_{44} & B_{45} & 0 \\
\vdots & \ddots & \ddots & B_{54} & B_{55} & B_{56} \\
0      & \cdots & \cdots & 0      & B_{65} & B_{66}
\end{bmatrix}
</math>
is stored as the 6-by-3 matrix
:<math>
\begin{bmatrix}
0 & B_{11} & B_{12}\\
B_{21} & B_{22} & B_{23} \\
B_{32} & B_{33} & B_{34} \\
B_{43} & B_{44} & B_{45} \\
B_{54} & B_{55} & B_{56} \\
B_{65} & B_{66} & 0
\end{bmatrix}.
</math>


----
----


Code Developed by: <span style="color:blue"> fmk </span>
Code Developed by: <span style="color:blue"> fmk </span>

Revision as of 01:20, 9 March 2010




This command is used to construct a BandSPDSOE linear system of equation object. As the name implies, this class is used for symmetric positive definite matrix systems which have a banded profile. The matrix is stored as shown below in a 1 dimensional array of size equal to the (bandwidth/2) times the number of unknowns. When a solution is required, the Lapack routines are used. To following command is used to construct such a system:

system BandSPD



NOTES:


THEORY:

An n×n matrix A=(ai,j ) is a symmmetric banded matrix if all matrix elements are zero outside a diagonally bordered band whose range is determined by constants k:

<math>a_{i,j}=0 \quad\mbox{if}\quad j<i-k \quad\mbox{ or }\quad j>i+k; \quad k \ge 0.\,</math>
<math>a_{i,j} = a_{j,i}\,</math>

The bandwidth of the matrix is k + k + 1.


For example, a symmetric 6-by-6 matrix with a right bandwidth of 2:

<math>

\begin{bmatrix}

A_{11} & A_{12} & A_{13} &   0  & \cdots & 0 \\
     & A_{22} & A_{23} & A_{24} & \ddots & \vdots \\
     &        & A_{33} & A_{34} & A_{35} & 0 \\
     &        &        & A_{44} & A_{45} & A_{46} \\
     & sym    &        &        & A_{55} & A_{56} \\
     &        &        &        &        & A_{66}

\end{bmatrix}. </math> This matrix is stored as the 6-by-3 matrix:

<math>

\begin{bmatrix}

A_{11} & A_{12} & A_{13} \\
A_{22} & A_{23} & A_{24} \\
A_{33} & A_{34} & A_{35} \\
A_{44} & A_{45} & A_{46} \\
A_{55} & A_{56} & 0 \\
A_{66} & 0 & 0

\end{bmatrix}. </math>



Code Developed by: fmk