Displacement-Based Beam-Column Element: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
{| | {| | ||
| style="background:yellow; color:black; width:800px" | '''element dispBeamColumn $eleTag $iNode $jNode $numIntgrPts $secTag $transfTag <-mass $massDens> | | style="background:yellow; color:black; width:800px" | '''element dispBeamColumn $eleTag $iNode $jNode $numIntgrPts $secTag $transfTag <-mass $massDens> <-integration $intType>''' | ||
|} | |} | ||
Line 10: | Line 10: | ||
{| | {| | ||
| style="background:yellow; color:black; width:800px" | '''element dispBeamColumn $eleTag $iNode $jNode $numIntgrPts -sections $secTag1 $secTag2 ... $transfTag <-mass $massDens> | | style="background:yellow; color:black; width:800px" | '''element dispBeamColumn $eleTag $iNode $jNode $numIntgrPts -sections $secTag1 $secTag2 ... $transfTag <-mass $massDens> <-integration $intType>''' | ||
|} | |} | ||
Line 30: | Line 30: | ||
|- | |- | ||
| '''$massDens''' || element mass density (per unit length), from which a lumped-mass matrix is formed (optional, default=0.0) | | '''$massDens''' || element mass density (per unit length), from which a lumped-mass matrix is formed (optional, default=0.0) | ||
|- | |- | ||
| '''$intType''' || numerical integration type, options are Lobotto, Legendre, Radau, NewtonCotes, Trapezoidal (optional, default= Lobotto) | | '''$intType''' || numerical integration type, options are Lobotto, Legendre, Radau, NewtonCotes, Trapezoidal (optional, default= Lobotto) |
Revision as of 18:55, 19 March 2012
- Command_Manual
- Tcl Commands
- Modeling_Commands
- model
- uniaxialMaterial
- ndMaterial
- frictionModel
- section
- geometricTransf
- element
- node
- sp commands
- mp commands
- timeSeries
- pattern
- mass
- block commands
- region
- rayleigh
- Analysis Commands
- Output Commands
- Misc Commands
- DataBase Commands
This command is used to construct a displacement beam element object, which is based on the displacement formulation, and considers the spread of plasticity along the element.
element dispBeamColumn $eleTag $iNode $jNode $numIntgrPts $secTag $transfTag <-mass $massDens> <-integration $intType> |
To change the sections along the element length, the following form of command may be used:
element dispBeamColumn $eleTag $iNode $jNode $numIntgrPts -sections $secTag1 $secTag2 ... $transfTag <-mass $massDens> <-integration $intType> |
$eleTag | unique element object tag |
$iNode $jNode | end nodes |
$numIntgrPts | number of integration points along the element. |
$secTag | identifier for previously-defined section object |
$secTag1 $secTag2 ... | $numIntgrPts identifiers of previously-defined section object |
$transfTag | identifier for previously-defined coordinate-transformation (CrdTransf) object |
$massDens | element mass density (per unit length), from which a lumped-mass matrix is formed (optional, default=0.0) |
$intType | numerical integration type, options are Lobotto, Legendre, Radau, NewtonCotes, Trapezoidal (optional, default= Lobotto) |
NOTE:
- The default integration along the element is based on Gauss-Lobatto quadrature rule (two integration points at the element ends).
- The default element is prismatic, i.e. the beam is represented by the section model identified by $secTag at each integration point.
- The -iter switch enables the iterative form of the flexibility formulation. Note that the iterative form can improve the rate of global convergence at the expense of more local element computation.
- The valid queries to a nonlinear beam-column element when creating an ElementRecorder object are 'force,' and 'section $secNum secArg1 secArg2...' Where $secNum refers to the integration point whose data is to be output.
EXAMPLE:
element dispBeamColumn 1 2 4 5 8 9; # force beam column element added with tag 1 between nodes 2 and 4 that has 5 integration points, each using section 8, and the element uses geometric transformation 9
REFERENCES:
Code Developed by: Micheal Scott, Oregon State Unievrsity