Drucker Prager: Difference between revisions
No edit summary |
No edit summary |
||
Line 55: | Line 55: | ||
The theory for the Drucker-Prager yield criterion can be found at wikipedia [http://en.wikipedia.org/wiki/Drucker_Prager_yield_criterion here] | The theory for the Drucker-Prager yield criterion can be found at wikipedia [http://en.wikipedia.org/wiki/Drucker_Prager_yield_criterion here] | ||
The the isotropic hardening modulus is defined using the indicated input paramaters as | The the isotropic hardening modulus is defined using the indicated input paramaters as | ||
<math> K^\prime (\alpha_1) = \theta H + (K_{\infty} - K_o) \delta_1 \exp(-\delta_1 \alpha_1) | <math> K^\prime (\alpha_1) = \theta H + (K_{\infty} - K_o) \delta_1 \exp(-\delta_1 \alpha_1) | ||
</math> | </math> | ||
and the kinematic hardening modulus is defined as | and the kinematic hardening modulus is defined as | ||
<math> H^\prime(\alpha_1) = (1 - \theta) H | <math> H^\prime(\alpha_1) = (1 - \theta) H | ||
</math> | </math> | ||
Tension softening is defined as | Tension softening is defined as | ||
<math> T(\alpha_2) = T_o \exp(-\delta_2 \alpha_2) | <math> T (\alpha_2) = T_o \exp(-\delta_2 \alpha_2) | ||
</math> | </math> | ||
Line 74: | Line 74: | ||
<math> T_o = \sqrt{\frac{2}{3}} \frac{\sigma_Y}{\rho} | <math> T_o = \sqrt{\frac{2}{3}} \frac{\sigma_Y}{\rho} | ||
</math> | </math> | ||
defines the tension cutoff surface. | |||
---- | ---- |
Revision as of 21:12, 1 February 2010
This command is used to construct an multi dimensional material object that has a Drucker-Prager yield criterium.
nDmaterial DruckerPrager $matTag $k $G $sigmaY $rho $rhoBar $Kinf $Ko $delta1 $delta2 $H $theta |
This Code has been Developed by: Peter Mackenzie, U Washington and the great Pedro Arduino, U Washington
$matTag | integer tag identifying material |
$k | bulk modulus |
$G | shear modulus |
$sigmaY | yield stress |
$rho | frictional strength parameter |
$rhoBar | non-associative parameter |
$Kinf | nonlinear isotropic strain hardening parameter |
$Ko | nonlinear isotropic strain hardening parameter |
$delta1 | nonlinear isotropic strain hardening parameter |
$delta2 | tension softening parameter |
$H | linear kinematic strain hardening parameter |
$theta | linear kinematic strain hardening parameter |
The material formulations for the Drucker-Prager object are "ThreeDimensional," "PlaneStrain," "Plane Stress," "AxiSymmetric".
EXAMPLE
An example like ZeroLengthContactNTS2D would be nice
THEORY:
The theory for the Drucker-Prager yield criterion can be found at wikipedia here
The the isotropic hardening modulus is defined using the indicated input paramaters as
<math> K^\prime (\alpha_1) = \theta H + (K_{\infty} - K_o) \delta_1 \exp(-\delta_1 \alpha_1) </math>
and the kinematic hardening modulus is defined as
<math> H^\prime(\alpha_1) = (1 - \theta) H </math>
Tension softening is defined as
<math> T (\alpha_2) = T_o \exp(-\delta_2 \alpha_2) </math>
in which
<math> T_o = \sqrt{\frac{2}{3}} \frac{\sigma_Y}{\rho} </math>
defines the tension cutoff surface.
REFERENCES;
Drucker, D. C. and Prager, W., "Soil mechanics and plastic analysis for limit design. Quarterly of Applied Mathematics, vol. 10, no. 2, pp. 157–165, 1952.