Drucker Prager: Difference between revisions
No edit summary |
No edit summary |
||
Line 63: | Line 63: | ||
<math> H^\prime(\alpha) = (1 - \theta) H | <math> H^\prime(\alpha) = (1 - \theta) H | ||
</math> | |||
Tension softening is defined as: | |||
<math> T(\alpha_2) = T_o \exp(-\delta_2 \alpha_2) | |||
</math> | |||
in which | |||
<math> T_o = \sqrt{\frac{2}{3}} \frac{\sigma_Y}{\rho} | |||
</math> | </math> | ||
Revision as of 21:08, 1 February 2010
This command is used to construct an multi dimensional material object that has a Drucker-Prager yield criterium.
nDmaterial DruckerPrager $matTag $k $G $sigmaY $rho $rhoBar $Kinf $Ko $delta1 $delta2 $H $theta |
This Code has been Developed by: Peter Mackenzie, U Washington and the great Pedro Arduino, U Washington
$matTag | integer tag identifying material |
$k | bulk modulus |
$G | shear modulus |
$sigmaY | yield stress |
$rho | frictional strength parameter |
$rhoBar | non-associative parameter |
$Kinf | nonlinear isotropic strain hardening parameter |
$Ko | nonlinear isotropic strain hardening parameter |
$delta1 | nonlinear isotropic strain hardening parameter |
$delta2 | tension softening parameter |
$H | linear kinematic strain hardening parameter |
$theta | linear kinematic strain hardening parameter |
The material formulations for the Drucker-Prager object are "ThreeDimensional," "PlaneStrain," "Plane Stress," "AxiSymmetric".
EXAMPLE
An example like ZeroLengthContactNTS2D would be nice
THEORY:
The theory for the Drucker-Prager yield criterion can be found at wikipedia here
The the isotropic hardening modulus is defined using the indicated input paramaters as:
<math> K^\prime (\alpha) = \theta H + (K_{\infty} - K_o) \delta_1 \exp(-\delta_1 \alpha) </math>
and the kinematic hardening modulus is defined as:
<math> H^\prime(\alpha) = (1 - \theta) H </math>
Tension softening is defined as:
<math> T(\alpha_2) = T_o \exp(-\delta_2 \alpha_2) </math>
in which
<math> T_o = \sqrt{\frac{2}{3}} \frac{\sigma_Y}{\rho} </math>
REFERENCES;
Drucker, D. C. and Prager, W., "Soil mechanics and plastic analysis for limit design. Quarterly of Applied Mathematics, vol. 10, no. 2, pp. 157–165, 1952.