BilinearOilDamper Material: Difference between revisions

From OpenSeesWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 4: Line 4:


{|  
{|  
| style="background:lime; color:black; width:800px" | '''uniaxialMaterial BilinearOilDamper  $matTag  $K $Cd $alpha <$Fr $p> <$LGap> < $NM $RelTol $AbsTol $MaxHalf> '''
| style="background:lime; color:black; width:800px" | '''uniaxialMaterial BilinearOilDamper  $matTag  $K $Cd <$Fr $p> <$LGap> < $NM $RelTol $AbsTol $MaxHalf> '''
|}
|}


Line 12: Line 12:
|  style="width:150px" | '''$matTag ''' || integer tag identifying material
|  style="width:150px" | '''$matTag ''' || integer tag identifying material
|-
|-
|  '''$K ''' || Elastic stiffness of linear spring (to model the axial flexibility of an oil damper (brace and damper portion)
|  '''$K ''' || Elastic stiffness of linear spring to model the axial flexibility of an oil damper (brace and damper portion)
|-
|-
|  '''$Cd ''' || Viscous parameter of oil damper
|  '''$Cd ''' || Viscous damper coefficient of an oil damper (before relief)
|-
|-
| '''$alpha ''' || Viscocity exponent
| '''$Fr ''' || Damper relief load (default=1.0, Damper property)
|-
|-
| '''$Fr ''' || Damper relief force (Damper property)
| '''$p ''' || Post-relief viscous damping coefficient ratio (default=1.0, linear oil damper)
|-
| '''$p ''' || Post-relief damping coefficient ratio (Damper property)
|-
|-
|  '''$LGap ''' || gap length to simulate the gap length due to the pin tolerance
|  '''$LGap ''' || gap length to simulate the gap length due to the pin tolerance (default=0.0: zero tolerance)
|-
|-
|  '''$NM ''' || Employed adaptive numerical algorithm (default value NM = 1; 1 = Dormand-Prince54, 2=adaptive finite difference)
|  '''$NM ''' || Employed adaptive numerical algorithm (default value NM = 1; 1 = Dormand-Prince54, 2=adaptive finite difference)
Line 28: Line 26:
|  '''$RelTol ''' || Tolerance for absolute relative error control of the adaptive iterative algorithm (default value 10^-6)
|  '''$RelTol ''' || Tolerance for absolute relative error control of the adaptive iterative algorithm (default value 10^-6)
|-
|-
|  '''$AbsTol ''' ||  Tolerance for absolute error control of adaptive iterative algorithm (default value 10^-6)
|  '''$AbsTol ''' ||  Tolerance for absolute error control of adaptive iterative algorithm (default value 10^-10)
|-
|-
|  '''$MaxHalf ''' ||  Maximum number of sub-step iterations within an integration step (default value 15)
|  '''$MaxHalf ''' ||  Maximum number of sub-step iterations within an integration step (default value 15)

Revision as of 12:16, 6 August 2015




This command is used to construct a BilinearOilDamper material, which simulates the hysteretic response of bilinear oil dampers with a valve relief. Two adaptive iterative algorithms have been implemented and validated to solve numerically the constitutive equations within a bilinear oil damper with a high-precision accuracy.

uniaxialMaterial BilinearOilDamper $matTag $K $Cd <$Fr $p> <$LGap> < $NM $RelTol $AbsTol $MaxHalf>

$matTag integer tag identifying material
$K Elastic stiffness of linear spring to model the axial flexibility of an oil damper (brace and damper portion)
$Cd Viscous damper coefficient of an oil damper (before relief)
$Fr Damper relief load (default=1.0, Damper property)
$p Post-relief viscous damping coefficient ratio (default=1.0, linear oil damper)
$LGap gap length to simulate the gap length due to the pin tolerance (default=0.0: zero tolerance)
$NM Employed adaptive numerical algorithm (default value NM = 1; 1 = Dormand-Prince54, 2=adaptive finite difference)
$RelTol Tolerance for absolute relative error control of the adaptive iterative algorithm (default value 10^-6)
$AbsTol Tolerance for absolute error control of adaptive iterative algorithm (default value 10^-10)
$MaxHalf Maximum number of sub-step iterations within an integration step (default value 15)

Examples:

1. Input parameters:
Assume a bilinear oil damper with axial stiffness K=200.0kN/mm, viscous damping coefficient C=6.0KN/(mm/s), relief load Fr=1000.0KN, p=0.1. The input parameters for the material should be as follows:
uniaxialMaterial BilinearOilDamper 1 200.0 6.0 1000 0.1
Using these properties, Figure 1c shows the hysteretic response of this damper for sinusoidal displacement increments of 12, 24 and 36mm and a frequency f = 1.0Hz. Figures 1a-1d show the damper hysteresis with varying post-relief viscous damping coefficient ratio (p=1.0, 0.5, 0.1, 0.0).
Error creating thumbnail: File with dimensions greater than 12.5 MP
Oil Damper with various input parameter variations
Assume a bilinear oil damper with axial stiffness K=200.0kN/mm, viscous damping coefficient C=6.0KN/(mm/s), relief load Fr=1000.0KN, p=0.1 and LGap = 0.5mm due to the pin tolerance at the damper ends. The input parameters for the material should be as follows:
uniaxialMaterial BilinearOilDamper 1 200.0 6.0 1000 0.1 0.5
Using these properties, Figure 2c shows the hysteretic response of this damper for sinusoidal displacement increments of 0.5, 1 and 1.5mm and a frequency f = 1.0Hz. Figures 2a-2d show the damper hysteresis with varying gap length (LGap = 0.0, 0.2. 0.5. 1.0 mm)
Error creating thumbnail: File missing
Oil Damper with various input parameter variations

References:

[1] Akcelyan, S., and Lignos, D.G. (2015), “Adaptive Numerical Method Algorithms for Nonlinear Viscous and Bilinear Oil Damper Models Under Random Vibrations”, ASCE Journal of Engineering Mechanics, (under review).

Code Developed and Implemented by : Sarven Akcelyan & Prof. Dimitrios G. Lignos, (McGill University)