BilinearOilDamper Material: Difference between revisions

From OpenSeesWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{CommandManualMenu}}
{{CommandManualMenu}}


This command is used to construct a BilinearOilDamper material, which simulates the hysteretic response of bilinear oil dampers with a valve relief. Two adaptive iterative algorithms have been implemented and validated to solve numerically the constitutive equations within a bilinear oil damper with a high-precision accuracy.  
This command is used to construct a BilinearOilDamper material, which simulates the hysteretic response of bilinear oil dampers with relief valve. Two adaptive iterative algorithms have been implemented and validated to solve numerically the constitutive equations within a bilinear oil damper with a high-precision accuracy.  


{|  
{|  
| style="background:lime; color:black; width:800px" | '''uniaxialMaterial BilinearOilDamper  $matTag  $K $Cd $alpha <$Fr $p> <$LGap> < $NM $RelTol $AbsTol $MaxHalf> '''
| style="background:lime; color:black; width:800px" | '''uniaxialMaterial BilinearOilDamper  $matTag  $K $Cd <$Fr $p> <$LGap> < $NM $RelTol $AbsTol $MaxHalf> '''
|}
|}


Line 12: Line 12:
|  style="width:150px" | '''$matTag ''' || integer tag identifying material
|  style="width:150px" | '''$matTag ''' || integer tag identifying material
|-
|-
|  '''$K ''' || Elastic stiffness of linear spring (to model the axial flexibility of an oil damper (brace and damper portion)
|  '''$K ''' || Elastic stiffness of linear spring to model the axial flexibility of an oil damper (brace and damper portion)
|-
|-
|  '''$Cd ''' || Viscous parameter of oil damper
|  '''$Cd ''' || Viscous damping coefficient of an oil damper (before relief)
|-
|-
| '''$alpha ''' || Viscocity exponent
| '''$Fr ''' || Damper relief load (default=1.0, Damper property)
|-
|-
| '''$Fr ''' || Damper relief force (Damper property)
| '''$p ''' || Post-relief viscous damping coefficient ratio (default=1.0, linear oil damper)
|-
| '''$p ''' || Post-relief damping coefficient ratio (Damper property)
|-
|-
|  '''$LGap ''' || gap length to simulate the gap length due to the pin tolerance
|  '''$LGap ''' || gap length to simulate the gap length due to the pin tolerance (default=0.0: zero tolerance)
|-
|-
|  '''$NM ''' || Employed adaptive numerical algorithm (default value NM = 1; 1 = Dormand-Prince54, 2=adaptive finite difference)
|  '''$NM ''' || Employed adaptive numerical algorithm (default value NM = 1; 1 = Dormand-Prince54, 2=adaptive finite difference)
Line 28: Line 26:
|  '''$RelTol ''' || Tolerance for absolute relative error control of the adaptive iterative algorithm (default value 10^-6)
|  '''$RelTol ''' || Tolerance for absolute relative error control of the adaptive iterative algorithm (default value 10^-6)
|-
|-
|  '''$AbsTol ''' ||  Tolerance for absolute error control of adaptive iterative algorithm (default value 10^-6)
|  '''$AbsTol ''' ||  Tolerance for absolute error control of adaptive iterative algorithm (default value 10^-10)
|-
|-
|  '''$MaxHalf ''' ||  Maximum number of sub-step iterations within an integration step (default value 15)
|  '''$MaxHalf ''' ||  Maximum number of sub-step iterations within an integration step (default value 15)
Line 43: Line 41:
|-
|-
| Assume a bilinear oil damper with axial stiffness K=200.0kN/mm, viscous damping coefficient C=6.0KN/(mm/s), relief load Fr=1000.0KN, p=0.1.
| Assume a bilinear oil damper with axial stiffness K=200.0kN/mm, viscous damping coefficient C=6.0KN/(mm/s), relief load Fr=1000.0KN, p=0.1.
|-
| The input parameters for the material should be as follows:
| The input parameters for the material should be as follows:
|-
|-
|-
|-
|-
Line 53: Line 51:
|-
|-
|-
|-
| [[File:Fig1_OilDampers.jpg|850px|thumb|left| Oil Damper with various input parameter variations]]  
| [[File:BOD_1.png|550px|thumb|left| Figure 1.Oil Damper with various post-relief viscous damping coefficient ratios]]  
|-
|-
|-
|-
| Assume a bilinear oil damper with axial stiffness K=200.0kN/mm, viscous damping coefficient C=6.0KN/(mm/s), relief load Fr=1000.0KN, p=0.1 and LGap = 0.5mm due to the pin tolerance at the damper ends.
| Assume a bilinear oil damper with axial stiffness K=200.0kN/mm, viscous damping coefficient C=6.0KN/(mm/s), relief load Fr=1000.0KN, p=0.1 and LGap = 0.5mm due to the pin tolerance at the damper ends.
|-
| The input parameters for the material should be as follows:
| The input parameters for the material should be as follows:
|-
|-
|-
|-
|-
Line 67: Line 65:
|-
|-
|-
|-
| [[File:Fig2_OilDampers.pdf|850px|thumb|left| Oil Damper with various input parameter variations]]  
| [[File:BODgap_2.png|550px|thumb|left| Figure 2.Oil Damper with various gap lengths]]  
|-
|-
|-
|-
Line 76: Line 74:
'''References''':
'''References''':
{|
{|
|  style="width:5px" | '''[1]''' || Akcelyan, S., and Lignos, D.G. (2015), “Adaptive Numerical Method Algorithms for Nonlinear Viscous and Bilinear Oil Damper Models Under Random Vibrations”, ASCE Journal of Engineering Mechanics, (under review).
|  style="width:5px" | '''[1]''' || Akcelyan, S., Lignos, D. G., Hikino, T. (2018). “Adaptive Numerical Method Algorithms for Nonlinear Viscous and Bilinear Oil Damper Models Subjected to Dynamic Loading.” Soil Dynamics and Earthquake Engineering, 113, 488-502. [http://doi.org/10.1016/j.soildyn.2018.06.021].
|-
|  style="width:5px" | '''[2]''' || Akcelyan, S. (2017). "Seismic retrofit of existing steel tall buildings with supplemental damping devices."  Ph.D. Dissertation, McGill University, Canada.
|-
|-
|}
|}
Code Developed and Implemented by : <span style="color:blue">  '''''[http://dimitrios-lignos.research.mcgill.ca/PAkcelyan.html Sarven Akcelyan]''''' & '''''[http://dimitrios-lignos.research.mcgill.ca/PLignos.html Prof. Dimitrios G. Lignos]''''', (McGill University) </span>
Code Developed and Implemented by : <span style="color:blue">  '''''[http://sarvenakcelyan.com Sarven Akcelyan]''''' & '''''[http://dimitrios-lignos.research.mcgill.ca/PLignos.html Prof. Dimitrios G. Lignos]''''', (McGill University) </span>

Latest revision as of 17:24, 19 July 2018




This command is used to construct a BilinearOilDamper material, which simulates the hysteretic response of bilinear oil dampers with relief valve. Two adaptive iterative algorithms have been implemented and validated to solve numerically the constitutive equations within a bilinear oil damper with a high-precision accuracy.

uniaxialMaterial BilinearOilDamper $matTag $K $Cd <$Fr $p> <$LGap> < $NM $RelTol $AbsTol $MaxHalf>

$matTag integer tag identifying material
$K Elastic stiffness of linear spring to model the axial flexibility of an oil damper (brace and damper portion)
$Cd Viscous damping coefficient of an oil damper (before relief)
$Fr Damper relief load (default=1.0, Damper property)
$p Post-relief viscous damping coefficient ratio (default=1.0, linear oil damper)
$LGap gap length to simulate the gap length due to the pin tolerance (default=0.0: zero tolerance)
$NM Employed adaptive numerical algorithm (default value NM = 1; 1 = Dormand-Prince54, 2=adaptive finite difference)
$RelTol Tolerance for absolute relative error control of the adaptive iterative algorithm (default value 10^-6)
$AbsTol Tolerance for absolute error control of adaptive iterative algorithm (default value 10^-10)
$MaxHalf Maximum number of sub-step iterations within an integration step (default value 15)

Examples:

1. Input parameters:
Assume a bilinear oil damper with axial stiffness K=200.0kN/mm, viscous damping coefficient C=6.0KN/(mm/s), relief load Fr=1000.0KN, p=0.1.
The input parameters for the material should be as follows:
uniaxialMaterial BilinearOilDamper 1 200.0 6.0 1000 0.1
Using these properties, Figure 1c shows the hysteretic response of this damper for sinusoidal displacement increments of 12, 24 and 36mm and a frequency f = 1.0Hz. Figures 1a-1d show the damper hysteresis with varying post-relief viscous damping coefficient ratio (p=1.0, 0.5, 0.1, 0.0).
Figure 1.Oil Damper with various post-relief viscous damping coefficient ratios
Assume a bilinear oil damper with axial stiffness K=200.0kN/mm, viscous damping coefficient C=6.0KN/(mm/s), relief load Fr=1000.0KN, p=0.1 and LGap = 0.5mm due to the pin tolerance at the damper ends.
The input parameters for the material should be as follows:
uniaxialMaterial BilinearOilDamper 1 200.0 6.0 1000 0.1 0.5
Using these properties, Figure 2c shows the hysteretic response of this damper for sinusoidal displacement increments of 0.5, 1 and 1.5mm and a frequency f = 1.0Hz. Figures 2a-2d show the damper hysteresis with varying gap length (LGap = 0.0, 0.2. 0.5. 1.0 mm)
Figure 2.Oil Damper with various gap lengths

References:

[1] Akcelyan, S., Lignos, D. G., Hikino, T. (2018). “Adaptive Numerical Method Algorithms for Nonlinear Viscous and Bilinear Oil Damper Models Subjected to Dynamic Loading.” Soil Dynamics and Earthquake Engineering, 113, 488-502. [1].
[2] Akcelyan, S. (2017). "Seismic retrofit of existing steel tall buildings with supplemental damping devices." Ph.D. Dissertation, McGill University, Canada.

Code Developed and Implemented by : Sarven Akcelyan & Prof. Dimitrios G. Lignos, (McGill University)