ViscousDamper Material: Difference between revisions

From OpenSeesWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(8 intermediate revisions by 2 users not shown)
Line 4: Line 4:


{|  
{|  
| style="background:lime; color:black; width:800px" | '''uniaxialMaterial ViscousDamper  $matTag  $K $Cd $alpha'''
| style="background:lime; color:black; width:800px" | '''uniaxialMaterial ViscousDamper  $matTag  $K $Cd $alpha <$LGap> < $NM $RelTol $AbsTol $MaxHalf> '''
|}
|}


Line 12: Line 12:
|  style="width:150px" | '''$matTag ''' || integer tag identifying material
|  style="width:150px" | '''$matTag ''' || integer tag identifying material
|-
|-
|  '''$K ''' || Elastic stiffness of linear spring (to model the axial flexibility of a viscous damper (brace and damper portion)
|  '''$K ''' || Elastic stiffness of linear spring to model the axial flexibility of a viscous damper (e.g. combined stiffness of the supporting brace and internal damper portion)
|-
|-
|  '''$Cd ''' || Viscous parameter of damper
|  '''$Cd ''' || Damping coefficient
|-
|-
|  '''$alpha ''' || Viscous damper exponent
|  '''$alpha ''' || Velocity exponent
|-
|-
|  '''<$LGap> ''' || gap length to simulate the gap length due to the pin tolerance
|  '''$LGap ''' || Gap length to simulate the gap length due to the pin tolerance
|-
|-
|  '''<$NM> ''' || Number of (default value NM = 1)
|  '''$NM ''' || Employed adaptive numerical algorithm (default value NM = 1; 1 = Dormand-Prince54, 2=6th order Adams-Bashforth-Moulton, 3=modified Rosenbrock Triple)
|-
|-
|  '''<$RelTol> ''' || Tolerance for relative error control of the adaptive iterative algorithm (default value 10^-6)
|  '''$RelTol ''' || Tolerance for absolute relative error control of the adaptive iterative algorithm (default value 10^-6)
|-
|-
|  '''<$AbsTol> ''' ||  Tolerance for absolute relative error control of adaptive iterative algorithm (default value 10^-6)
|  '''$AbsTol ''' ||  Tolerance for absolute error control of adaptive iterative algorithm (default value 10^-10)
|-
|-
|  '''<$MaxHalf> ''' ||  Maximum number of sub-step iterations within an integration step (default value 15)
|  '''$MaxHalf ''' ||  Maximum number of sub-step iterations within an integration step (default value 15)
|-
|-
|}
|}
Line 37: Line 37:
| '''''1. Input parameters:'''''
| '''''1. Input parameters:'''''
|-
|-
| Assume a viscous damper with axial stiffness K=300.0kN/mm, viscous parameter Cd=280.3kN(s/mm)<sup>0.3, and exponent a=0.30.  
| Assume a viscous damper with axial stiffness K=300.0kN/mm, damping coefficient Cd=280.3kN(s/mm)<sup>0.3</sup>, and exponent a=0.30.  
|-
|-
| The input parameters for the material should be as follows:
| The input parameters for the material should be as follows:
Line 48: Line 48:
| Using these properties, Figure 1 shows the hysteretic response of this damper for sinusoidal displacement increments of 12, 24 and 36mm and a frequency f = 0.5Hz.  
| Using these properties, Figure 1 shows the hysteretic response of this damper for sinusoidal displacement increments of 12, 24 and 36mm and a frequency f = 0.5Hz.  
|-
|-
|The sensitivity of the viscous damper with respect to its axial stiffness is shown in Figures 2 to 4 for the following set of parameters:   
|The sensitivity of the viscous damper with respect to its velocity exponent is shown in Figures 2 to 4 for the following set of parameters:   
|-
|-
| [[File:Fig2_ViscousDampers.png|850px|thumb|left| Viscous Damper with various input parameter variations]]  
| [[File:Fig2_ViscousDampers.png|850px|thumb|left| Viscous Damper with various input parameter variations]]  
Line 61: Line 61:
'''References''':
'''References''':
{|
{|
|  style="width:5px" | '''[1]''' || Akcelyan, S., and Lignos, D.G. (2015), “Adaptive Numerical Method Algorithms for Nonlinear Viscous and Bilinear Oil Damper Models Under Random Vibrations”, ASCE Journal of Engineering Mechanics, (under review).
|  style="width:5px" | '''[1]''' || Akcelyan, S., Lignos, D. G., Hikino, T., and Nakashima, M. (2016). “Evaluation of simplified and state-of-the-art analysis procedures for steel frame buildings equipped with supplemental damping devices based on E-Defense full-scale shake table tests.” Journal of Structural Engineering, 142(6), 04016024. [http://ascelibrary.org/doi/ref/10.1061/%28ASCE%29ST.1943-541X.0001474]
|-
|-
|  style="width:5px" | '''[2]''' || Oohara, K., and Kasai, K. (2002), “Time-History Analysis Models for Nonlinear Viscous Dampers”, Proc. Structural Engineers World Congress (SEWC), Yokohama, JAPAN, CD-ROM, T2-2-b-3 (in Japanese).
|  style="width:5px" | '''[2]''' || Akcelyan, S., Lignos, D. G., Hikino, T. (2018). “Adaptive Numerical Method Algorithms for Nonlinear Viscous and Bilinear Oil Damper Models Subjected to Dynamic Loading.” Soil Dynamics and Earthquake Engineering, 113, 488-502. [http://doi.org/10.1016/j.soildyn.2018.06.021].
|-
|-
|'''[3]''' || Kasai K, Oohara K. “Algorithm and Computer Code To Simulate Response of Nonlinear Viscous Damper” Passively Controlled Structure Symposium 2001, Yokohama, Japan (in Japanese).  
|  style="width:5px" | '''[3]''' || Akcelyan, S. (2017). "Seismic retrofit of existing steel tall buildings with supplemental damping devices."  Ph.D. Dissertation, McGill University, Canada.
|-
|  style="width:5px" | '''[4]''' || Oohara, K., and Kasai, K. (2002), “Time-History Analysis Models for Nonlinear Viscous Dampers”, Proc. Structural Engineers World Congress (SEWC), Yokohama, JAPAN, CD-ROM, T2-2-b-3 (in Japanese).
|-
|'''[5]''' || Kasai K, Oohara K. “Algorithm and Computer Code To Simulate Response of Nonlinear Viscous Damper” Passively Controlled Structure Symposium 2001, Yokohama, Japan (in Japanese).  
|-
|-
|}
|}
Code Developed and Implemented by : <span style="color:blue">  '''''[http://dimitrios-lignos.research.mcgill.ca/PAkcelyan.html Sarven Akcelyan]''''' & '''''[http://dimitrios-lignos.research.mcgill.ca/PLignos.html Prof. Dimitrios G. Lignos]''''', (McGill University) </span>
Code Developed and Implemented by : <span style="color:blue">  '''''[http://sarvenakcelyan.com Sarven Akcelyan]''''' & '''''[http://dimitrios-lignos.research.mcgill.ca/PLignos.html Prof. Dimitrios G. Lignos]''''', (McGill University) </span>

Latest revision as of 17:23, 19 July 2018




This command is used to construct a ViscousDamper material, which represents the Maxwell Model (linear spring and nonlinear dashpot in series). The ViscousDamper material simulates the hysteretic response of nonlinear viscous dampers. An adaptive iterative algorithm has been implemented and validated to solve numerically the constitutive equations within a nonlinear viscous damper with a high-precision accuracy.

uniaxialMaterial ViscousDamper $matTag $K $Cd $alpha <$LGap> < $NM $RelTol $AbsTol $MaxHalf>

$matTag integer tag identifying material
$K Elastic stiffness of linear spring to model the axial flexibility of a viscous damper (e.g. combined stiffness of the supporting brace and internal damper portion)
$Cd Damping coefficient
$alpha Velocity exponent
$LGap Gap length to simulate the gap length due to the pin tolerance
$NM Employed adaptive numerical algorithm (default value NM = 1; 1 = Dormand-Prince54, 2=6th order Adams-Bashforth-Moulton, 3=modified Rosenbrock Triple)
$RelTol Tolerance for absolute relative error control of the adaptive iterative algorithm (default value 10^-6)
$AbsTol Tolerance for absolute error control of adaptive iterative algorithm (default value 10^-10)
$MaxHalf Maximum number of sub-step iterations within an integration step (default value 15)

Examples:

1. Input parameters:
Assume a viscous damper with axial stiffness K=300.0kN/mm, damping coefficient Cd=280.3kN(s/mm)0.3, and exponent a=0.30.
The input parameters for the material should be as follows:
uniaxialMaterial ViscousDamper 1 300 280.3 0.30
Using these properties, Figure 1 shows the hysteretic response of this damper for sinusoidal displacement increments of 12, 24 and 36mm and a frequency f = 0.5Hz.
The sensitivity of the viscous damper with respect to its velocity exponent is shown in Figures 2 to 4 for the following set of parameters:
Viscous Damper with various input parameter variations
2. Single story single bay frame with viscous damper

References:

[1] Akcelyan, S., Lignos, D. G., Hikino, T., and Nakashima, M. (2016). “Evaluation of simplified and state-of-the-art analysis procedures for steel frame buildings equipped with supplemental damping devices based on E-Defense full-scale shake table tests.” Journal of Structural Engineering, 142(6), 04016024. [1]
[2] Akcelyan, S., Lignos, D. G., Hikino, T. (2018). “Adaptive Numerical Method Algorithms for Nonlinear Viscous and Bilinear Oil Damper Models Subjected to Dynamic Loading.” Soil Dynamics and Earthquake Engineering, 113, 488-502. [2].
[3] Akcelyan, S. (2017). "Seismic retrofit of existing steel tall buildings with supplemental damping devices." Ph.D. Dissertation, McGill University, Canada.
[4] Oohara, K., and Kasai, K. (2002), “Time-History Analysis Models for Nonlinear Viscous Dampers”, Proc. Structural Engineers World Congress (SEWC), Yokohama, JAPAN, CD-ROM, T2-2-b-3 (in Japanese).
[5] Kasai K, Oohara K. “Algorithm and Computer Code To Simulate Response of Nonlinear Viscous Damper” Passively Controlled Structure Symposium 2001, Yokohama, Japan (in Japanese).

Code Developed and Implemented by : Sarven Akcelyan & Prof. Dimitrios G. Lignos, (McGill University)