Stress Density Material: Difference between revisions
No edit summary |
mNo edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{CommandManualMenu}} | {{CommandManualMenu}} | ||
This command is used to construct a multi-dimensional stress density material object for modeling sand behaviour following the work of Cubrinovski and Ishihara (1998a,b). | This command is used to construct a multi-dimensional stress density material object for modeling sand behaviour following the work of Cubrinovski and Ishihara (1998a,b). Note that as of January 2020 this material is still undergoing verification testing for more complex loading and initial conditions. | ||
{| | {| | ||
| style="background:yellow; color:black; width:780px" | '''nDMaterial | | style="background:yellow; color:black; width:780px" | '''nDMaterial stressDensity $matTag $mDen $eNot $A $n $nu $a1 $b1 $a2 $b2 $a3 $b3 $fd $muNot $muCyc $sc $M $patm <$ssl1 $ssl2 $ssl3 $ssl4 $ssl5 $ssl6 $ssl7 $hsl $pmin>''' | ||
|} | |} | ||
Line 48: | Line 48: | ||
{| | {| | ||
| style="width:150px" | '''<$ssl1> ''' || void ratio of quasi steady state (QSS-line) at pressure $ | | style="width:150px" | '''<$ssl1> ''' || void ratio of quasi steady state (QSS-line) at pressure $pmin (default = 0.877) | ||
|- | |- | ||
| '''<$ssl2> ''' || void ratio of quasi steady state (QSS-line) at | | '''<$ssl2> ''' || void ratio of quasi steady state (QSS-line) at 10 kPa (default = 0.877) | ||
|- | |- | ||
| '''<$ssl3> ''' || void ratio of quasi steady state (QSS-line) at | | '''<$ssl3> ''' || void ratio of quasi steady state (QSS-line) at 30 kPa (default = 0.873) | ||
|- | |- | ||
| '''<$ssl4> ''' || void ratio of quasi steady state (QSS-line) at | | '''<$ssl4> ''' || void ratio of quasi steady state (QSS-line) at 50 kPa (default = 0.870) | ||
|- | |- | ||
| '''<$ssl5> ''' || void ratio of quasi steady state (QSS-line) at | | '''<$ssl5> ''' || void ratio of quasi steady state (QSS-line) at 100 kPa (default = 0.860) | ||
|- | |- | ||
| '''<$ssl6> ''' || void ratio of quasi steady state (QSS-line) at | | '''<$ssl6> ''' || void ratio of quasi steady state (QSS-line) at 200 kPa (default = 0.850) | ||
|- | |- | ||
| '''<$ssl7> ''' || void ratio of quasi steady state (QSS-line) at | | '''<$ssl7> ''' || void ratio of quasi steady state (QSS-line) at 400 kPa (default = 0.833) | ||
|- | |- | ||
| '''<$hsl> ''' || void ratio of upper reference state (UR-line) for all pressures (default = 0.895) | | '''<$hsl> ''' || void ratio of upper reference state (UR-line) for all pressures (default = 0.895) | ||
|- | |- | ||
| '''<$ | | '''<$pmin> ''' || pressure corresponding to $ssl1 (default = 1.0 kPa) | ||
|} | |} | ||
The material formulations for the | The material formulations for the stressDensity object are "PlaneStrain" | ||
---- | ---- | ||
Line 101: | Line 77: | ||
==General Information== | ==General Information== | ||
This nDMaterial object provides the | This nDMaterial object provides the stress density model for sands under monotonic and cyclic loading as set forth by Cubrinovski and Ishihara (1998a,b). The original formulation for this model was applicable to plane strain conditions and this is the only currently available formulation. | ||
===Notes === | ===Notes === | ||
Line 128: | Line 104: | ||
set sc 0.0055 | set sc 0.0055 | ||
set M 0.607 | set M 0.607 | ||
nDMaterial | nDMaterial stressDensity 1 $mDen $eNot $A $n $nu $a1 $b1 $a2 $b2 $a3 $b3 $fd $muNot $ muCyc $sc $M $patm | ||
===References=== | ===References=== | ||
Line 135: | Line 111: | ||
Cubrinovski, M. and Ishihara K. (1998b) 'State concept and modified elastoplasticity for sand modelling,' ''Soils and Foundations,'' 38(4), 213-225. | Cubrinovski, M. and Ishihara K. (1998b) 'State concept and modified elastoplasticity for sand modelling,' ''Soils and Foundations,'' 38(4), 213-225. | ||
---- | ---- | ||
==Example Analysis== | ==Example Analysis== | ||
Element test with pure shear loading starting from isotropic initial state of stress. | |||
<source lang="tcl"> | <source lang="tcl"> | ||
# intended number of cycles in the test | |||
set nCycles 120 | |||
# shear strain increment for the test | |||
set dg 0.0001 | |||
set wg [expr 2.0*$dg] | |||
# max number of steps | |||
set maxStep 20000 | |||
# initial confinement pressure (kPa) | |||
set pNot -95.0 | |||
# max/min shear stress in the test (kPa) | |||
set CSR 0.2 | |||
set maxShear [expr -$CSR*$pNot] | |||
wipe | |||
model BasicBuilder -ndm 2 -ndf 2 | |||
# Create nodes | |||
node 1 0.0 0.0 | |||
node 2 1.0 0.0 | |||
node 3 1.0 1.0 | |||
node 4 0.0 1.0 | |||
# Create fixities | |||
fix 1 1 1 | |||
fix 2 1 1 | |||
fix 3 1 1 | |||
fix 4 1 1 | |||
# atmospheric pressure | |||
set patm 98.1 | |||
# mass density | |||
set mDen 1.8 | |||
# steady state line void ratio | |||
set ssl1 0.832 | |||
set ssl2 0.832 | |||
set ssl3 0.810 | |||
set ssl4 0.796 | |||
set ssl5 0.776 | |||
set ssl6 0.756 | |||
set ssl7 0.735 | |||
# hydrostatic state line void ratio | |||
set hsl 0.852 | |||
# reference pressures for state lines | |||
set p1 1.0 | |||
# stress density model parameters | |||
set A 250.0 | |||
set m 0.60 | |||
set nu 0.20 | |||
set a1 0.592 | |||
set b1 0.021 | |||
set a2 291.0 | |||
set b2 55.0 | |||
set a3 98.0 | |||
set b3 13.0 | |||
set fd 4.0 | |||
set muNot 0.15 | |||
set sc 0.0055 | |||
set M 0.607 | |||
# initial void ratio | |||
set emax 0.885 | |||
set emin 0.541 | |||
set Dr 0.54 | |||
set eNot [expr $emax - $Dr*($emax-$emin)] | |||
set muCyc 0.0 | |||
# Create material | |||
nDMaterial stressDensity 2 $mDen $eNot $A $m $nu $a1 $b1 $a2 $b2 $a3 $b3 $fd $muNot $muCyc \ | |||
$sc $M $patm $ssl1 $ssl2 $ssl3 $ssl4 $ssl5 $ssl6 $ssl7 $hsl $p1 | |||
nDMaterial InitStress 1 2 $pNot 2 | |||
# Create element | |||
element SSPquad 1 1 2 3 4 1 PlaneStrain 1.0 0.0 0.0 | |||
# Create recorders | |||
recorder Element -file stress.out -time stress | |||
recorder Element -file strain.out -time strain | |||
recorder Node -file disp.out -time -dof 1 2 disp | |||
set dt 0.1 | |||
# Create analysis | |||
constraints Penalty 1.0e18 1.0e18 | |||
algorithm Linear | |||
numberer RCM | |||
system ProfileSPD | |||
integrator LoadControl $dt | |||
analysis Static | |||
set dMax [expr 0.6/$wg] | |||
eval "timeSeries Path 400 -time {0 0.1 0.2 300.2} -values {0 0 0 $dMax} -factor 1.0" | |||
pattern Plain 400 400 { | |||
sp 3 1 $wg | |||
sp 4 1 $wg | |||
} | |||
analyze 1 | |||
setParameter -value 1 -ele 1 materialState | |||
analyze 1 | |||
# counter for max number of steps | |||
set count 0 | |||
set cCount 0 | |||
set cyc 1 | |||
puts "Beginning of Cycle 1" | |||
# loop through the total number of cycles | |||
for {set i 1} {$i <= [expr 2*$nCycles]} {incr i} { | |||
if {$cCount == 2} { | |||
set cyc [expr $cyc+1] | |||
puts "Beginning of Cycle $cyc" | |||
set cCount 0 | |||
} | |||
# loop within each cycle | |||
for {set j 1} {$j < 5000} {incr j} { | |||
# abort if count is greater than max number of steps | |||
if {$count >= $maxStep} {break} | |||
# analyze single step and get the current stress | |||
analyze 1 | |||
set count [expr $count + 1] | |||
# get stress from element | |||
set stress [eleResponse 1 stress] | |||
# shear stress is component 2 | |||
set tau [lindex $stress 2] | |||
# signal change in loading direction if needed | |||
if {[expr abs($tau)] >= $maxShear} { | |||
# get strain from element | |||
set strain [eleResponse 1 strain] | |||
set gamma [lindex $strain 2] | |||
puts "direction change required: tau = $tau; gamma = $gamma" | |||
# get current displacements of shearing nodes | |||
set f [expr 2.0*[nodeDisp 3 1]] | |||
set b [expr 2.0*[nodeDisp 4 1]] | |||
#puts "current displacement of front row is $f" | |||
#puts "current displacement of back row is $b" | |||
# get number of steps required to reach current disp from zero | |||
set nStep [expr round(abs($b/$wg))] | |||
#puts "there are $nStep steps needed to get back to neutral loading" | |||
# get current time | |||
set cTime [getTime] | |||
#puts "current time is $cTime" | |||
# set an end time for the load patterns | |||
set zTime [expr $cTime + $nStep*$dt] | |||
set eTime [expr $zTime + 100.0*$nStep] | |||
#puts "end time for the new load pattern is $eTime" | |||
remove loadPattern [expr 400+$i-1] | |||
eval "timeSeries Path [expr 400+$i] -time {$cTime $eTime 1e10} -values {1 -1000 -1000}" | |||
pattern Plain [expr 400+$i] [expr 400+$i] { | |||
sp 3 1 $b | |||
sp 4 1 $b | |||
} | |||
set cCount [expr $cCount + 1] | |||
break | |||
} | |||
} | |||
} | |||
wipe | |||
</source> | </source> |
Latest revision as of 23:06, 28 January 2020
- Command_Manual
- Tcl Commands
- Modeling_Commands
- model
- uniaxialMaterial
- ndMaterial
- frictionModel
- section
- geometricTransf
- element
- node
- sp commands
- mp commands
- timeSeries
- pattern
- mass
- block commands
- region
- rayleigh
- Analysis Commands
- Output Commands
- Misc Commands
- DataBase Commands
This command is used to construct a multi-dimensional stress density material object for modeling sand behaviour following the work of Cubrinovski and Ishihara (1998a,b). Note that as of January 2020 this material is still undergoing verification testing for more complex loading and initial conditions.
nDMaterial stressDensity $matTag $mDen $eNot $A $n $nu $a1 $b1 $a2 $b2 $a3 $b3 $fd $muNot $muCyc $sc $M $patm <$ssl1 $ssl2 $ssl3 $ssl4 $ssl5 $ssl6 $ssl7 $hsl $pmin> |
$matTag | integer tag identifying material |
$mDen | mass density |
$eNot | initial void ratio |
$A | constant for elastic shear modulus |
$n | pressure dependency exponent for elastic shear modulus |
$nu | Poisson's ratio |
$a1 | peak stress ratio coefficient (etaMax = a1 + b1*Is) |
$b1 | peak stress ratio coefficient (etaMax = a1 + b1*Is) |
$a2 | max shear modulus coefficient (Gn_max = a2 + b2*Is) |
$b2 | max shear modulus coefficient (Gn_max = a2 + b2*Is) |
$a3 | min shear modulus coefficient (Gn_min = a3 + b3*Is) |
$b3 | min shear modulus coefficient (Gn_min = a3 + b3*Is) |
$fd | degradation constant |
$muNot | dilatancy coefficient (monotonic loading) |
$muCyc | dilatancy coefficient (cyclic loading) |
$sc | dilatancy strain |
$M | critical state stress ratio |
$patm | atmospheric pressure (in appropriate units) |
Optional steady state line parameters (default values shown for each, be careful with units)
<$ssl1> | void ratio of quasi steady state (QSS-line) at pressure $pmin (default = 0.877) |
<$ssl2> | void ratio of quasi steady state (QSS-line) at 10 kPa (default = 0.877) |
<$ssl3> | void ratio of quasi steady state (QSS-line) at 30 kPa (default = 0.873) |
<$ssl4> | void ratio of quasi steady state (QSS-line) at 50 kPa (default = 0.870) |
<$ssl5> | void ratio of quasi steady state (QSS-line) at 100 kPa (default = 0.860) |
<$ssl6> | void ratio of quasi steady state (QSS-line) at 200 kPa (default = 0.850) |
<$ssl7> | void ratio of quasi steady state (QSS-line) at 400 kPa (default = 0.833) |
<$hsl> | void ratio of upper reference state (UR-line) for all pressures (default = 0.895) |
<$pmin> | pressure corresponding to $ssl1 (default = 1.0 kPa) |
The material formulations for the stressDensity object are "PlaneStrain"
Code Developed by Saumyashuchi Das, University of Canterbury. Maintained by Chris McGann
General Information
This nDMaterial object provides the stress density model for sands under monotonic and cyclic loading as set forth by Cubrinovski and Ishihara (1998a,b). The original formulation for this model was applicable to plane strain conditions and this is the only currently available formulation.
Notes
Usage Examples
The following usage example provides the input parameters for dry pluviated Toyura sand (with initial void ratio e = 0.73) after Cubrinovski and Ishihara (1998b). The units of this analysis are Mg, kN, s, and m.
# mass density set mDen 1.8 # atmospheric pressure set patm 98.1 # stress density model parameters set eNot 0.730 set A 250.0 set n 0.60 set a1 0.58 set b1 0.023 set a2 230.0 set b2 65.0 set a3 79.0 set b3 16.0 set fd 4.0 set muNot 0.22 set muCyc 0.0 set sc 0.0055 set M 0.607 nDMaterial stressDensity 1 $mDen $eNot $A $n $nu $a1 $b1 $a2 $b2 $a3 $b3 $fd $muNot $ muCyc $sc $M $patm
References
Cubrinovski, M. and Ishihara K. (1998a) 'Modelling of sand behaviour based on state concept,' Soils and Foundations, 38(3), 115-127.
Cubrinovski, M. and Ishihara K. (1998b) 'State concept and modified elastoplasticity for sand modelling,' Soils and Foundations, 38(4), 213-225.
Example Analysis
Element test with pure shear loading starting from isotropic initial state of stress.
# intended number of cycles in the test
set nCycles 120
# shear strain increment for the test
set dg 0.0001
set wg [expr 2.0*$dg]
# max number of steps
set maxStep 20000
# initial confinement pressure (kPa)
set pNot -95.0
# max/min shear stress in the test (kPa)
set CSR 0.2
set maxShear [expr -$CSR*$pNot]
wipe
model BasicBuilder -ndm 2 -ndf 2
# Create nodes
node 1 0.0 0.0
node 2 1.0 0.0
node 3 1.0 1.0
node 4 0.0 1.0
# Create fixities
fix 1 1 1
fix 2 1 1
fix 3 1 1
fix 4 1 1
# atmospheric pressure
set patm 98.1
# mass density
set mDen 1.8
# steady state line void ratio
set ssl1 0.832
set ssl2 0.832
set ssl3 0.810
set ssl4 0.796
set ssl5 0.776
set ssl6 0.756
set ssl7 0.735
# hydrostatic state line void ratio
set hsl 0.852
# reference pressures for state lines
set p1 1.0
# stress density model parameters
set A 250.0
set m 0.60
set nu 0.20
set a1 0.592
set b1 0.021
set a2 291.0
set b2 55.0
set a3 98.0
set b3 13.0
set fd 4.0
set muNot 0.15
set sc 0.0055
set M 0.607
# initial void ratio
set emax 0.885
set emin 0.541
set Dr 0.54
set eNot [expr $emax - $Dr*($emax-$emin)]
set muCyc 0.0
# Create material
nDMaterial stressDensity 2 $mDen $eNot $A $m $nu $a1 $b1 $a2 $b2 $a3 $b3 $fd $muNot $muCyc \
$sc $M $patm $ssl1 $ssl2 $ssl3 $ssl4 $ssl5 $ssl6 $ssl7 $hsl $p1
nDMaterial InitStress 1 2 $pNot 2
# Create element
element SSPquad 1 1 2 3 4 1 PlaneStrain 1.0 0.0 0.0
# Create recorders
recorder Element -file stress.out -time stress
recorder Element -file strain.out -time strain
recorder Node -file disp.out -time -dof 1 2 disp
set dt 0.1
# Create analysis
constraints Penalty 1.0e18 1.0e18
algorithm Linear
numberer RCM
system ProfileSPD
integrator LoadControl $dt
analysis Static
set dMax [expr 0.6/$wg]
eval "timeSeries Path 400 -time {0 0.1 0.2 300.2} -values {0 0 0 $dMax} -factor 1.0"
pattern Plain 400 400 {
sp 3 1 $wg
sp 4 1 $wg
}
analyze 1
setParameter -value 1 -ele 1 materialState
analyze 1
# counter for max number of steps
set count 0
set cCount 0
set cyc 1
puts "Beginning of Cycle 1"
# loop through the total number of cycles
for {set i 1} {$i <= [expr 2*$nCycles]} {incr i} {
if {$cCount == 2} {
set cyc [expr $cyc+1]
puts "Beginning of Cycle $cyc"
set cCount 0
}
# loop within each cycle
for {set j 1} {$j < 5000} {incr j} {
# abort if count is greater than max number of steps
if {$count >= $maxStep} {break}
# analyze single step and get the current stress
analyze 1
set count [expr $count + 1]
# get stress from element
set stress [eleResponse 1 stress]
# shear stress is component 2
set tau [lindex $stress 2]
# signal change in loading direction if needed
if {[expr abs($tau)] >= $maxShear} {
# get strain from element
set strain [eleResponse 1 strain]
set gamma [lindex $strain 2]
puts "direction change required: tau = $tau; gamma = $gamma"
# get current displacements of shearing nodes
set f [expr 2.0*[nodeDisp 3 1]]
set b [expr 2.0*[nodeDisp 4 1]]
#puts "current displacement of front row is $f"
#puts "current displacement of back row is $b"
# get number of steps required to reach current disp from zero
set nStep [expr round(abs($b/$wg))]
#puts "there are $nStep steps needed to get back to neutral loading"
# get current time
set cTime [getTime]
#puts "current time is $cTime"
# set an end time for the load patterns
set zTime [expr $cTime + $nStep*$dt]
set eTime [expr $zTime + 100.0*$nStep]
#puts "end time for the new load pattern is $eTime"
remove loadPattern [expr 400+$i-1]
eval "timeSeries Path [expr 400+$i] -time {$cTime $eTime 1e10} -values {1 -1000 -1000}"
pattern Plain [expr 400+$i] [expr 400+$i] {
sp 3 1 $b
sp 4 1 $b
}
set cCount [expr $cCount + 1]
break
}
}
}
wipe