hysteretic material

Forum for OpenSees users to post questions, comments, etc. on the use of the OpenSees interpreter, OpenSees.exe

Moderators: silvia, selimgunay, Moderators

Post Reply
setareh20
Posts: 26
Joined: Wed Mar 24, 2010 10:12 pm
Location: IIEES
Contact:

hysteretic material

Post by setareh20 »

Hi ;
I want to model concrete cantilever column with hysterical material . the error is like this :

WARNING insufficient arguments
Input command: uniaxialMaterial Hysteretic 1 66.8 30 66.8 55 -66.8 0 -66.8 -30 -66.8 -55 1 1 0 0 0
Want: uniaxialMaterial Hysteretic tag? mom1p? rot1p? mom2p? rot2p? <mom3p? rot3p?>mom1n? rot1n? mom2n? rot2n? <mom3n? rot3n?> pinchX? pinchY? damfc1? damfc2? <beta?>

while executing
"uniaxialMaterial Hysteretic $IDhys $s1p $e1p $s2p $e2p $s1n $e1n $s2n $e2n $s3n $e3n $pinchX $pinchY $damage1 $damage2 $beta"
(file "C:\Users\setareh\Desktop\material hystersis\Ex2c.Canti2D.InelasticFib
erSection.EQ - hystersis.tcl" line 100)
--------------------------------------------------------------------------

This is my model and I do not know what should Ido . Please help me as soon as possible .
thanks alot

# -------------------------------------------------------------------------------------------------
# Example 2. 2D cantilever column, dynamic eq ground motion
# Silvia Mazzoni & Frank McKenna, 2006
#
# ^Y
# |
# 2 __
# | |
# | |
# | |
# (1) LCol
# | |
# | |
# | |
# =1= _|_ -------->X
#

# SET UP ----------------------------------------------------------------------------
# units: kip, inch, sec
wipe; # clear memory of all past model definitions
file mkdir Data; # create data directory
model BasicBuilder -ndm 2 -ndf 3; # Define the model builder, ndm=#dimension, ndf=#dofs


# define GEOMETRY -------------------------------------------------------------
set LCol 432; # column length
set Weight 2000.; # superstructure weight
# define section geometry
set HCol 60; # Column Depth
set BCol 60; # Column Width

# calculated parameters
set PCol $Weight; # nodal dead-load weight per column
set g 386.4; # g.
set Mass [expr $PCol/$g]; # nodal mass
# calculated geometry parameters
set ACol [expr $BCol*$HCol]; # cross-sectional area
set IzCol [expr 1./12.*$BCol*pow($HCol,3)]; # Column moment of inertia

# nodal coordinates:
node 1 0 0; # node#, X, Y
node 2 0 $LCol

# Single point constraints -- Boundary Conditions
fix 1 1 1 1; # node DX DY RZ

# nodal masses:
mass 2 $Mass 1e-9 0.; # node#, Mx My Mz, Mass=Weight/g, neglect rotational inertia at nodes

# Define ELEMENTS & SECTIONS -------------------------------------------------------------
set ColSecTag 1; # assign a tag number to the column section
# define section geometry
set coverCol 5.; # Column cover to reinforcing steel NA.
set numBarsCol 16; # number of longitudinal-reinforcement bars in column. (symmetric top & bot)
set barAreaCol 2.25 ; # area of longitudinal-reinforcement bars


# MATERIAL parameters -------------------------------------------------------------------
set IDconcU 1; # material ID tag -- unconfined cover concrete
set IDreinf 2; # material ID tag -- reinforcement
# nominal concrete compressive strength
set fc -4.; # CONCRETE Compressive Strength (+Tension, -Compression)
set Ec [expr 57*sqrt(-$fc*1000)]; # Concrete Elastic Modulus (the term in sqr root needs to be in psi
# unconfined concrete
set fc1U $fc; # UNCONFINED concrete (todeschini parabolic model), maximum stress
set eps1U -0.003; # strain at maximum strength of unconfined concrete
set fc2U [expr 0.2*$fc1U]; # ultimate stress
set eps2U -0.01; # strain at ultimate stress
set lambda 0.1; # ratio between unloading slope at $eps2 and initial slope $Ec
# tensile-strength properties
set ftU [expr -0.14*$fc1U]; # tensile strength +tension
set Ets [expr $ftU/0.002]; # tension softening stiffness
# -----------
set Fy 66.8; # STEEL yield stress
set Es 29000.; # modulus of steel
set Bs 0.01; # strain-hardening ratio
set R0 18; # control the transition from elastic to plastic branches
set cR1 0.925; # control the transition from elastic to plastic branches
set cR2 0.15; # control the transition from elastic to plastic branches
#uniaxialMaterial Concrete02 $IDconcU $fc1U $eps1U $fc2U $eps2U $lambda $ftU $Ets; # build cover concrete (unconfined)
uniaxialMaterial Steel02 $IDreinf $Fy $Es $Bs $R0 $cR1 $cR2;

# build reinforcement material
set s1p 66.8;
set e1p 30;
set s2p 66.8;
set e2p 55;
set e1n 0;
set s1n -66.8;
set e2n -30;
set s2n -66.8;
set e3n -55;
set s3n -66.8;
set pinchX 1;
set pinchY 1;
set damage1 0;
set damage2 0;
set beta 0;
set IDhys 1;
uniaxialMaterial Hysteretic $IDhys $s1p $e1p $s2p $e2p $s1n $e1n $s2n $e2n $s3n $e3n $pinchX $pinchY $damage1 $damage2 $beta;



# FIBER SECTION properties -------------------------------------------------------------
# symmetric section
# y
# ^
# |
# --------------------- -- --
# | o o o | | -- cover
# | | |
# | | |
# z <--- | + | H
# | | |
# | | |
# | o o o | | -- cover
# --------------------- -- --
# |-------- B --------|
#
# RC section:
set coverY [expr $HCol/2.0]; # The distance from the section z-axis to the edge of the cover concrete -- outer edge of cover concrete
set coverZ [expr $BCol/2.0]; # The distance from the section y-axis to the edge of the cover concrete -- outer edge of cover concrete
set coreY [expr $coverY-$coverCol]
set coreZ [expr $coverZ-$coverCol]
set nfY 16; # number of fibers for concrete in y-direction
set nfZ 4; # number of fibers for concrete in z-direction
section fiberSec $ColSecTag {; # Define the fiber section
patch quadr $IDconcU $nfZ $nfY -$coverY $coverZ -$coverY -$coverZ $coverY -$coverZ $coverY $coverZ; # Define the concrete patch
layer straight $IDreinf $numBarsCol $barAreaCol -$coreY $coreZ -$coreY -$coreZ; # top layer reinfocement
layer straight $IDreinf $numBarsCol $barAreaCol $coreY $coreZ $coreY -$coreZ; # bottom layer reinforcement
}; # end of fibersection definition

# define geometric transformation: performs a linear geometric transformation of beam stiffness and resisting force from the basic system to the global-coordinate system
set ColTransfTag 1; # associate a tag to column transformation
geomTransf Linear $ColTransfTag ;

# element connectivity:
set numIntgrPts 5; # number of integration points for force-based element
element nonlinearBeamColumn 1 1 2 $numIntgrPts $ColSecTag $ColTransfTag; # self-explanatory when using variables

# Define RECORDERS -------------------------------------------------------------
recorder Node -file Data/DFree.out -time -node 2 -dof 1 2 3 disp; # displacements of free nodes
recorder Node -file Data/DBase.out -time -node 1 -dof 1 2 3 disp; # displacements of support nodes
recorder Node -file Data/RBase.out -time -node 1 -dof 1 2 3 reaction; # support reaction
recorder Drift -file Data/Drift.out -time -iNode 1 -jNode 2 -dof 1 -perpDirn 2 ; # lateral drift
recorder Element -file Data/FCol.out -time -ele 2 globalForce; # element forces -- column
recorder Element -file Data/ForceColSec1.out -time -ele 1 section 1 force; # Column section forces, axial and moment, node i
recorder Element -file Data/DefoColSec1.out -time -ele 1 section 1 deformation; # section deformations, axial and curvature, node i
recorder Element -file Data/ForceColSec$numIntgrPts.out -time -ele 1 section $numIntgrPts force; # section forces, axial and moment, node j
recorder Element -file Data/DefoColSec$numIntgrPts.out -time -ele 1 section $numIntgrPts deformation; # section deformations, axial and curvature, node j


# define GRAVITY -------------------------------------------------------------
pattern Plain 1 Linear {
load 2 0 -$PCol 0
}

# Gravity-analysis parameters -- load-controlled static analysis
set Tol 1.0e-8; # convergence tolerance for test
constraints Plain; # how it handles boundary conditions
numberer Plain; # renumber dof's to minimize band-width (optimization), if you want to
system BandGeneral; # how to store and solve the system of equations in the analysis
test NormDispIncr $Tol 6 ; # determine if convergence has been achieved at the end of an iteration step
algorithm Newton; # use Newton's solution algorithm: updates tangent stiffness at every iteration
set NstepGravity 10; # apply gravity in 10 steps
set DGravity [expr 1./$NstepGravity]; # first load increment;
integrator LoadControl $DGravity; # determine the next time step for an analysis
analysis Static; # define type of analysis static or transient
analyze $NstepGravity; # apply gravity
# ------------------------------------------------- maintain constant gravity loads and reset time to zero
loadConst -time 0.0

puts "Model Built"



recorder Node -file leftframe5.out -time -node 2 -dof 1 disp
recorder display animation 10 10 600 600 -file 1
prp 20 90 60
vup 0 0 2
fill 4
display 10 4 10

# a window to plot the nodal displacements versus load for node 2
recorder plot leftframe5.out Node_2_Xdisp 600 340 300 300 -columns 2 1



# DYNAMIC EQ ANALYSIS --------------------------------------------------------
# Uniform Earthquake ground motion (uniform acceleration input at all support nodes)
set GMdirection 1; # ground-motion direction
set GMfile "BM68elc.acc" ; # ground-motion filenames
set GMfact 1; # ground-motion scaling factor

# set up ground-motion-analysis parameters
set DtAnalysis [expr 0.01]; # time-step Dt for lateral analysis
set TmaxAnalysis [expr 10.]; # maximum duration of ground-motion analysis -- should be 50*$sec

# DYNAMIC ANALYSIS PARAMETERS
# CONSTRAINTS handler -- Determines how the constraint equations are enforced in the analysis (http://opensees.berkeley.edu/OpenSees/m ... al/617.htm)
# Plain Constraints -- Removes constrained degrees of freedom from the system of equations
# Lagrange Multipliers -- Uses the method of Lagrange multipliers to enforce constraints
# Penalty Method -- Uses penalty numbers to enforce constraints
# Transformation Method -- Performs a condensation of constrained degrees of freedom
constraints Transformation ;

# DOF NUMBERER (number the degrees of freedom in the domain): (http://opensees.berkeley.edu/OpenSees/m ... al/366.htm)
# determines the mapping between equation numbers and degrees-of-freedom
# Plain -- Uses the numbering provided by the user
# RCM -- Renumbers the DOF to minimize the matrix band-width using the Reverse Cuthill-McKee algorithm
numberer Plain

# SYSTEM (http://opensees.berkeley.edu/OpenSees/m ... al/371.htm)
# Linear Equation Solvers (how to store and solve the system of equations in the analysis)
# -- provide the solution of the linear system of equations Ku = P. Each solver is tailored to a specific matrix topology.
# ProfileSPD -- Direct profile solver for symmetric positive definite matrices
# BandGeneral -- Direct solver for banded unsymmetric matrices
# BandSPD -- Direct solver for banded symmetric positive definite matrices
# SparseGeneral -- Direct solver for unsymmetric sparse matrices (-piv option)
# SparseSPD -- Direct solver for symmetric sparse matrices
# UmfPack -- Direct UmfPack solver for unsymmetric matrices
system SparseGeneral -piv

# TEST: # convergence test to
# Convergence TEST (http://opensees.berkeley.edu/OpenSees/m ... al/360.htm)
# -- Accept the current state of the domain as being on the converged solution path
# -- determine if convergence has been achieved at the end of an iteration step
# NormUnbalance -- Specifies a tolerance on the norm of the unbalanced load at the current iteration
# NormDispIncr -- Specifies a tolerance on the norm of the displacement increments at the current iteration
# EnergyIncr-- Specifies a tolerance on the inner product of the unbalanced load and displacement increments at the current iteration
# RelativeNormUnbalance --
# RelativeNormDispIncr --
# RelativeEnergyIncr --
set Tol 1.e-8; # Convergence Test: tolerance
set maxNumIter 10; # Convergence Test: maximum number of iterations that will be performed before "failure to converge" is returned
set printFlag 0; # Convergence Test: flag used to print information on convergence (optional) # 1: print information on each step;
set TestType EnergyIncr; # Convergence-test type
test $TestType $Tol $maxNumIter $printFlag;

# Solution ALGORITHM: -- Iterate from the last time step to the current (http://opensees.berkeley.edu/OpenSees/m ... al/682.htm)
# Linear -- Uses the solution at the first iteration and continues
# Newton -- Uses the tangent at the current iteration to iterate to convergence
# ModifiedNewton -- Uses the tangent at the first iteration to iterate to convergence
# NewtonLineSearch --
# KrylovNewton --
# BFGS --
# Broyden --
set algorithmType ModifiedNewton
algorithm $algorithmType;

# Static INTEGRATOR: -- determine the next time step for an analysis (http://opensees.berkeley.edu/OpenSees/m ... al/689.htm)
# LoadControl -- Specifies the incremental load factor to be applied to the loads in the domain
# DisplacementControl -- Specifies the incremental displacement at a specified DOF in the domain
# Minimum Unbalanced Displacement Norm -- Specifies the incremental load factor such that the residual displacement norm in minimized
# Arc Length -- Specifies the incremental arc-length of the load-displacement path
# Transient INTEGRATOR: -- determine the next time step for an analysis including inertial effects
# Newmark -- The two parameter time-stepping method developed by Newmark
# HHT -- The three parameter Hilbert-Hughes-Taylor time-stepping method
# Central Difference -- Approximates velocity and acceleration by centered finite differences of displacement
set NewmarkGamma 0.5; # Newmark-integrator gamma parameter (also HHT)
set NewmarkBeta 0.25; # Newmark-integrator beta parameter
integrator Newmark $NewmarkGamma $NewmarkBeta

# ANALYSIS -- defines what type of analysis is to be performed (http://opensees.berkeley.edu/OpenSees/m ... al/324.htm)
# Static Analysis -- solves the KU=R problem, without the mass or damping matrices.
# Transient Analysis -- solves the time-dependent analysis. The time step in this type of analysis is constant. The time step in the output is also constant.
# variableTransient Analysis -- performs the same analysis type as the Transient Analysis object. The time step, however, is variable. This method is used when
# there are convergence problems with the Transient Analysis object at a peak or when the time step is too small. The time step in the output is also variable.
analysis Transient

# define DAMPING--------------------------------------------------------------------------------------
# apply Rayleigh DAMPING from $xDamp
# D=$alphaM*M + $betaKcurr*Kcurrent + $betaKcomm*KlastCommit + $beatKinit*$Kinitial
set xDamp 0.02; # 2% damping ratio
set lambda [eigen 1]; # eigenvalue mode 1
set omega [expr pow($lambda,0.5)];
set alphaM 0.; # M-prop. damping; D = alphaM*M
set betaKcurr 0.; # K-proportional damping; +beatKcurr*KCurrent
set betaKcomm [expr 2.*$xDamp/($omega)]; # K-prop. damping parameter; +betaKcomm*KlastCommitt
set betaKinit 0.; # initial-stiffness proportional damping +beatKinit*Kini
# define damping
rayleigh $alphaM $betaKcurr $betaKinit $betaKcomm; # RAYLEIGH damping

# --------------------------------- perform Dynamic Ground-Motion Analysis
# Uniform EXCITATION: acceleration input
set IDloadTag 400; # load tag
set dt 0.01; # time step for input ground motion
set GMfatt 1.0; # data in input file is in g Unifts -- ACCELERATION TH
set AccelSeries "Series -dt $dt -filePath $GMfile -factor $GMfatt"; # time series information
pattern UniformExcitation $IDloadTag $GMdirection -accel $AccelSeries ; # create Unifform excitation

set Nsteps [expr int($TmaxAnalysis/$DtAnalysis)];
set ok [analyze $Nsteps $DtAnalysis]; # actually perform analysis; returns ok=0 if analysis was successful

if {$ok != 0} { ; # if analysis was not successful.
# change some analysis parameters to achieve convergence
# performance is slower inside this loop
# Time-controlled analysis
set ok 0;
set controlTime [getTime];
while {$controlTime < $TmaxAnalysis && $ok == 0} {
set ok [analyze 1 $DtAnalysis]
set controlTime [getTime]
set ok [analyze 1 $DtAnalysis]
if {$ok != 0} {
puts "Trying Newton with Initial Tangent .."
test NormDispIncr $Tol 1000 0
algorithm Newton -initial
set ok [analyze 1 $DtAnalysis]
test $TestType $Tol $maxNumIter 0
algorithm $algorithmType
}
if {$ok != 0} {
puts "Trying Broyden .."
algorithm Broyden 8
set ok [analyze 1 $DtAnalysis]
algorithm $algorithmType
}
if {$ok != 0} {
puts "Trying NewtonWithLineSearch .."
algorithm NewtonLineSearch .8
set ok [analyze 1 $DtAnalysis]
algorithm $algorithmType
}
}
}; # end if ok !0


puts "Ground Motion Done. End Time: [getTime]"
KARIMIYAN
fmk
Site Admin
Posts: 5884
Joined: Fri Jun 11, 2004 2:33 pm
Location: UC Berkeley
Contact:

Post by fmk »

the material input is not quite as outlined in the manual .. if you need to specify s3n and e3n you also need to provide and s3p and e3p.
setareh20
Posts: 26
Joined: Wed Mar 24, 2010 10:12 pm
Location: IIEES
Contact:

Post by setareh20 »

Dear fmk ;

Thank you so much for your attention .

I added s3p and e3p in my program . After runing it , without any error and warning, I saw this message in cmd.exe :

HystereticMaterial::HystereticMaterial -- input backbone is not unique (one-to-one)

And I have not any output .
What does it mean and what should I do ?

many Thanks
KARIMIYAN
Naveed
Posts: 8
Joined: Tue Apr 07, 2009 7:21 am
Location: ROSE School-IUSS Pavia, Pavia, Italy
Contact:

Post by Naveed »

dear setareh
Your model has unsymmetric nonlinear model with e1n=0. try with very small, if you want, nonzero number...I checked it works!
Post Reply