Hi ;
I want to model concrete cantilever column with hysterical material . the error is like this :
WARNING insufficient arguments
Input command: uniaxialMaterial Hysteretic 1 66.8 30 66.8 55 -66.8 0 -66.8 -30 -66.8 -55 1 1 0 0 0
Want: uniaxialMaterial Hysteretic tag? mom1p? rot1p? mom2p? rot2p? <mom3p? rot3p?>mom1n? rot1n? mom2n? rot2n? <mom3n? rot3n?> pinchX? pinchY? damfc1? damfc2? <beta?>
while executing
"uniaxialMaterial Hysteretic $IDhys $s1p $e1p $s2p $e2p $s1n $e1n $s2n $e2n $s3n $e3n $pinchX $pinchY $damage1 $damage2 $beta"
(file "C:\Users\setareh\Desktop\material hystersis\Ex2c.Canti2D.InelasticFib
erSection.EQ - hystersis.tcl" line 100)
--------------------------------------------------------------------------
This is my model and I do not know what should Ido . Please help me as soon as possible .
thanks alot
# -------------------------------------------------------------------------------------------------
# Example 2. 2D cantilever column, dynamic eq ground motion
# Silvia Mazzoni & Frank McKenna, 2006
#
# ^Y
# |
# 2 __
# | |
# | |
# | |
# (1) LCol
# | |
# | |
# | |
# =1= _|_ -------->X
#
# SET UP ----------------------------------------------------------------------------
# units: kip, inch, sec
wipe; # clear memory of all past model definitions
file mkdir Data; # create data directory
model BasicBuilder -ndm 2 -ndf 3; # Define the model builder, ndm=#dimension, ndf=#dofs
# define GEOMETRY -------------------------------------------------------------
set LCol 432; # column length
set Weight 2000.; # superstructure weight
# define section geometry
set HCol 60; # Column Depth
set BCol 60; # Column Width
# calculated parameters
set PCol $Weight; # nodal dead-load weight per column
set g 386.4; # g.
set Mass [expr $PCol/$g]; # nodal mass
# calculated geometry parameters
set ACol [expr $BCol*$HCol]; # cross-sectional area
set IzCol [expr 1./12.*$BCol*pow($HCol,3)]; # Column moment of inertia
# nodal coordinates:
node 1 0 0; # node#, X, Y
node 2 0 $LCol
# Single point constraints -- Boundary Conditions
fix 1 1 1 1; # node DX DY RZ
# nodal masses:
mass 2 $Mass 1e-9 0.; # node#, Mx My Mz, Mass=Weight/g, neglect rotational inertia at nodes
# Define ELEMENTS & SECTIONS -------------------------------------------------------------
set ColSecTag 1; # assign a tag number to the column section
# define section geometry
set coverCol 5.; # Column cover to reinforcing steel NA.
set numBarsCol 16; # number of longitudinal-reinforcement bars in column. (symmetric top & bot)
set barAreaCol 2.25 ; # area of longitudinal-reinforcement bars
# MATERIAL parameters -------------------------------------------------------------------
set IDconcU 1; # material ID tag -- unconfined cover concrete
set IDreinf 2; # material ID tag -- reinforcement
# nominal concrete compressive strength
set fc -4.; # CONCRETE Compressive Strength (+Tension, -Compression)
set Ec [expr 57*sqrt(-$fc*1000)]; # Concrete Elastic Modulus (the term in sqr root needs to be in psi
# unconfined concrete
set fc1U $fc; # UNCONFINED concrete (todeschini parabolic model), maximum stress
set eps1U -0.003; # strain at maximum strength of unconfined concrete
set fc2U [expr 0.2*$fc1U]; # ultimate stress
set eps2U -0.01; # strain at ultimate stress
set lambda 0.1; # ratio between unloading slope at $eps2 and initial slope $Ec
# tensile-strength properties
set ftU [expr -0.14*$fc1U]; # tensile strength +tension
set Ets [expr $ftU/0.002]; # tension softening stiffness
# -----------
set Fy 66.8; # STEEL yield stress
set Es 29000.; # modulus of steel
set Bs 0.01; # strain-hardening ratio
set R0 18; # control the transition from elastic to plastic branches
set cR1 0.925; # control the transition from elastic to plastic branches
set cR2 0.15; # control the transition from elastic to plastic branches
#uniaxialMaterial Concrete02 $IDconcU $fc1U $eps1U $fc2U $eps2U $lambda $ftU $Ets; # build cover concrete (unconfined)
uniaxialMaterial Steel02 $IDreinf $Fy $Es $Bs $R0 $cR1 $cR2;
# build reinforcement material
set s1p 66.8;
set e1p 30;
set s2p 66.8;
set e2p 55;
set e1n 0;
set s1n -66.8;
set e2n -30;
set s2n -66.8;
set e3n -55;
set s3n -66.8;
set pinchX 1;
set pinchY 1;
set damage1 0;
set damage2 0;
set beta 0;
set IDhys 1;
uniaxialMaterial Hysteretic $IDhys $s1p $e1p $s2p $e2p $s1n $e1n $s2n $e2n $s3n $e3n $pinchX $pinchY $damage1 $damage2 $beta;
# FIBER SECTION properties -------------------------------------------------------------
# symmetric section
# y
# ^
# |
# --------------------- -- --
# | o o o | | -- cover
# | | |
# | | |
# z <--- | + | H
# | | |
# | | |
# | o o o | | -- cover
# --------------------- -- --
# |-------- B --------|
#
# RC section:
set coverY [expr $HCol/2.0]; # The distance from the section z-axis to the edge of the cover concrete -- outer edge of cover concrete
set coverZ [expr $BCol/2.0]; # The distance from the section y-axis to the edge of the cover concrete -- outer edge of cover concrete
set coreY [expr $coverY-$coverCol]
set coreZ [expr $coverZ-$coverCol]
set nfY 16; # number of fibers for concrete in y-direction
set nfZ 4; # number of fibers for concrete in z-direction
section fiberSec $ColSecTag {; # Define the fiber section
patch quadr $IDconcU $nfZ $nfY -$coverY $coverZ -$coverY -$coverZ $coverY -$coverZ $coverY $coverZ; # Define the concrete patch
layer straight $IDreinf $numBarsCol $barAreaCol -$coreY $coreZ -$coreY -$coreZ; # top layer reinfocement
layer straight $IDreinf $numBarsCol $barAreaCol $coreY $coreZ $coreY -$coreZ; # bottom layer reinforcement
}; # end of fibersection definition
# define geometric transformation: performs a linear geometric transformation of beam stiffness and resisting force from the basic system to the global-coordinate system
set ColTransfTag 1; # associate a tag to column transformation
geomTransf Linear $ColTransfTag ;
# element connectivity:
set numIntgrPts 5; # number of integration points for force-based element
element nonlinearBeamColumn 1 1 2 $numIntgrPts $ColSecTag $ColTransfTag; # self-explanatory when using variables
# Define RECORDERS -------------------------------------------------------------
recorder Node -file Data/DFree.out -time -node 2 -dof 1 2 3 disp; # displacements of free nodes
recorder Node -file Data/DBase.out -time -node 1 -dof 1 2 3 disp; # displacements of support nodes
recorder Node -file Data/RBase.out -time -node 1 -dof 1 2 3 reaction; # support reaction
recorder Drift -file Data/Drift.out -time -iNode 1 -jNode 2 -dof 1 -perpDirn 2 ; # lateral drift
recorder Element -file Data/FCol.out -time -ele 2 globalForce; # element forces -- column
recorder Element -file Data/ForceColSec1.out -time -ele 1 section 1 force; # Column section forces, axial and moment, node i
recorder Element -file Data/DefoColSec1.out -time -ele 1 section 1 deformation; # section deformations, axial and curvature, node i
recorder Element -file Data/ForceColSec$numIntgrPts.out -time -ele 1 section $numIntgrPts force; # section forces, axial and moment, node j
recorder Element -file Data/DefoColSec$numIntgrPts.out -time -ele 1 section $numIntgrPts deformation; # section deformations, axial and curvature, node j
# define GRAVITY -------------------------------------------------------------
pattern Plain 1 Linear {
load 2 0 -$PCol 0
}
# Gravity-analysis parameters -- load-controlled static analysis
set Tol 1.0e-8; # convergence tolerance for test
constraints Plain; # how it handles boundary conditions
numberer Plain; # renumber dof's to minimize band-width (optimization), if you want to
system BandGeneral; # how to store and solve the system of equations in the analysis
test NormDispIncr $Tol 6 ; # determine if convergence has been achieved at the end of an iteration step
algorithm Newton; # use Newton's solution algorithm: updates tangent stiffness at every iteration
set NstepGravity 10; # apply gravity in 10 steps
set DGravity [expr 1./$NstepGravity]; # first load increment;
integrator LoadControl $DGravity; # determine the next time step for an analysis
analysis Static; # define type of analysis static or transient
analyze $NstepGravity; # apply gravity
# ------------------------------------------------- maintain constant gravity loads and reset time to zero
loadConst -time 0.0
puts "Model Built"
recorder Node -file leftframe5.out -time -node 2 -dof 1 disp
recorder display animation 10 10 600 600 -file 1
prp 20 90 60
vup 0 0 2
fill 4
display 10 4 10
# a window to plot the nodal displacements versus load for node 2
recorder plot leftframe5.out Node_2_Xdisp 600 340 300 300 -columns 2 1
# DYNAMIC EQ ANALYSIS --------------------------------------------------------
# Uniform Earthquake ground motion (uniform acceleration input at all support nodes)
set GMdirection 1; # ground-motion direction
set GMfile "BM68elc.acc" ; # ground-motion filenames
set GMfact 1; # ground-motion scaling factor
# set up ground-motion-analysis parameters
set DtAnalysis [expr 0.01]; # time-step Dt for lateral analysis
set TmaxAnalysis [expr 10.]; # maximum duration of ground-motion analysis -- should be 50*$sec
# DYNAMIC ANALYSIS PARAMETERS
# CONSTRAINTS handler -- Determines how the constraint equations are enforced in the analysis (http://opensees.berkeley.edu/OpenSees/m ... al/617.htm)
# Plain Constraints -- Removes constrained degrees of freedom from the system of equations
# Lagrange Multipliers -- Uses the method of Lagrange multipliers to enforce constraints
# Penalty Method -- Uses penalty numbers to enforce constraints
# Transformation Method -- Performs a condensation of constrained degrees of freedom
constraints Transformation ;
# DOF NUMBERER (number the degrees of freedom in the domain): (http://opensees.berkeley.edu/OpenSees/m ... al/366.htm)
# determines the mapping between equation numbers and degrees-of-freedom
# Plain -- Uses the numbering provided by the user
# RCM -- Renumbers the DOF to minimize the matrix band-width using the Reverse Cuthill-McKee algorithm
numberer Plain
# SYSTEM (http://opensees.berkeley.edu/OpenSees/m ... al/371.htm)
# Linear Equation Solvers (how to store and solve the system of equations in the analysis)
# -- provide the solution of the linear system of equations Ku = P. Each solver is tailored to a specific matrix topology.
# ProfileSPD -- Direct profile solver for symmetric positive definite matrices
# BandGeneral -- Direct solver for banded unsymmetric matrices
# BandSPD -- Direct solver for banded symmetric positive definite matrices
# SparseGeneral -- Direct solver for unsymmetric sparse matrices (-piv option)
# SparseSPD -- Direct solver for symmetric sparse matrices
# UmfPack -- Direct UmfPack solver for unsymmetric matrices
system SparseGeneral -piv
# TEST: # convergence test to
# Convergence TEST (http://opensees.berkeley.edu/OpenSees/m ... al/360.htm)
# -- Accept the current state of the domain as being on the converged solution path
# -- determine if convergence has been achieved at the end of an iteration step
# NormUnbalance -- Specifies a tolerance on the norm of the unbalanced load at the current iteration
# NormDispIncr -- Specifies a tolerance on the norm of the displacement increments at the current iteration
# EnergyIncr-- Specifies a tolerance on the inner product of the unbalanced load and displacement increments at the current iteration
# RelativeNormUnbalance --
# RelativeNormDispIncr --
# RelativeEnergyIncr --
set Tol 1.e-8; # Convergence Test: tolerance
set maxNumIter 10; # Convergence Test: maximum number of iterations that will be performed before "failure to converge" is returned
set printFlag 0; # Convergence Test: flag used to print information on convergence (optional) # 1: print information on each step;
set TestType EnergyIncr; # Convergence-test type
test $TestType $Tol $maxNumIter $printFlag;
# Solution ALGORITHM: -- Iterate from the last time step to the current (http://opensees.berkeley.edu/OpenSees/m ... al/682.htm)
# Linear -- Uses the solution at the first iteration and continues
# Newton -- Uses the tangent at the current iteration to iterate to convergence
# ModifiedNewton -- Uses the tangent at the first iteration to iterate to convergence
# NewtonLineSearch --
# KrylovNewton --
# BFGS --
# Broyden --
set algorithmType ModifiedNewton
algorithm $algorithmType;
# Static INTEGRATOR: -- determine the next time step for an analysis (http://opensees.berkeley.edu/OpenSees/m ... al/689.htm)
# LoadControl -- Specifies the incremental load factor to be applied to the loads in the domain
# DisplacementControl -- Specifies the incremental displacement at a specified DOF in the domain
# Minimum Unbalanced Displacement Norm -- Specifies the incremental load factor such that the residual displacement norm in minimized
# Arc Length -- Specifies the incremental arc-length of the load-displacement path
# Transient INTEGRATOR: -- determine the next time step for an analysis including inertial effects
# Newmark -- The two parameter time-stepping method developed by Newmark
# HHT -- The three parameter Hilbert-Hughes-Taylor time-stepping method
# Central Difference -- Approximates velocity and acceleration by centered finite differences of displacement
set NewmarkGamma 0.5; # Newmark-integrator gamma parameter (also HHT)
set NewmarkBeta 0.25; # Newmark-integrator beta parameter
integrator Newmark $NewmarkGamma $NewmarkBeta
# ANALYSIS -- defines what type of analysis is to be performed (http://opensees.berkeley.edu/OpenSees/m ... al/324.htm)
# Static Analysis -- solves the KU=R problem, without the mass or damping matrices.
# Transient Analysis -- solves the time-dependent analysis. The time step in this type of analysis is constant. The time step in the output is also constant.
# variableTransient Analysis -- performs the same analysis type as the Transient Analysis object. The time step, however, is variable. This method is used when
# there are convergence problems with the Transient Analysis object at a peak or when the time step is too small. The time step in the output is also variable.
analysis Transient
# define DAMPING--------------------------------------------------------------------------------------
# apply Rayleigh DAMPING from $xDamp
# D=$alphaM*M + $betaKcurr*Kcurrent + $betaKcomm*KlastCommit + $beatKinit*$Kinitial
set xDamp 0.02; # 2% damping ratio
set lambda [eigen 1]; # eigenvalue mode 1
set omega [expr pow($lambda,0.5)];
set alphaM 0.; # M-prop. damping; D = alphaM*M
set betaKcurr 0.; # K-proportional damping; +beatKcurr*KCurrent
set betaKcomm [expr 2.*$xDamp/($omega)]; # K-prop. damping parameter; +betaKcomm*KlastCommitt
set betaKinit 0.; # initial-stiffness proportional damping +beatKinit*Kini
# define damping
rayleigh $alphaM $betaKcurr $betaKinit $betaKcomm; # RAYLEIGH damping
# --------------------------------- perform Dynamic Ground-Motion Analysis
# Uniform EXCITATION: acceleration input
set IDloadTag 400; # load tag
set dt 0.01; # time step for input ground motion
set GMfatt 1.0; # data in input file is in g Unifts -- ACCELERATION TH
set AccelSeries "Series -dt $dt -filePath $GMfile -factor $GMfatt"; # time series information
pattern UniformExcitation $IDloadTag $GMdirection -accel $AccelSeries ; # create Unifform excitation
set Nsteps [expr int($TmaxAnalysis/$DtAnalysis)];
set ok [analyze $Nsteps $DtAnalysis]; # actually perform analysis; returns ok=0 if analysis was successful
if {$ok != 0} { ; # if analysis was not successful.
# change some analysis parameters to achieve convergence
# performance is slower inside this loop
# Time-controlled analysis
set ok 0;
set controlTime [getTime];
while {$controlTime < $TmaxAnalysis && $ok == 0} {
set ok [analyze 1 $DtAnalysis]
set controlTime [getTime]
set ok [analyze 1 $DtAnalysis]
if {$ok != 0} {
puts "Trying Newton with Initial Tangent .."
test NormDispIncr $Tol 1000 0
algorithm Newton -initial
set ok [analyze 1 $DtAnalysis]
test $TestType $Tol $maxNumIter 0
algorithm $algorithmType
}
if {$ok != 0} {
puts "Trying Broyden .."
algorithm Broyden 8
set ok [analyze 1 $DtAnalysis]
algorithm $algorithmType
}
if {$ok != 0} {
puts "Trying NewtonWithLineSearch .."
algorithm NewtonLineSearch .8
set ok [analyze 1 $DtAnalysis]
algorithm $algorithmType
}
}
}; # end if ok !0
puts "Ground Motion Done. End Time: [getTime]"
hysteretic material
Moderators: silvia, selimgunay, Moderators
hysteretic material
KARIMIYAN
Dear fmk ;
Thank you so much for your attention .
I added s3p and e3p in my program . After runing it , without any error and warning, I saw this message in cmd.exe :
HystereticMaterial::HystereticMaterial -- input backbone is not unique (one-to-one)
And I have not any output .
What does it mean and what should I do ?
many Thanks
Thank you so much for your attention .
I added s3p and e3p in my program . After runing it , without any error and warning, I saw this message in cmd.exe :
HystereticMaterial::HystereticMaterial -- input backbone is not unique (one-to-one)
And I have not any output .
What does it mean and what should I do ?
many Thanks
KARIMIYAN