Dear silvia and friends
I found very amazing problem! In following simple model I need eigen values.
After applying gravity load I obtained eigen values which are different from initial eigen values before applying gravity loads. It is more interesting that when I use Linear transformer, another results were obtained!! I don’t know if there is a bug in PDelta transformer or the results are rational? If there are rational which eigen values give me natural periods of model?
Please take a look at my model.
wipe
# Steel three story, four bay frame
# Units: KN, m
#
# Static pushover analysis with Fiber Nonlinear beam column element
#
# ________ ________ ________ ________ _
# | | | | |
# | | | | | 3.2
# | | | | |
# |_ ____|________|____ ___|______ _| _
# | | | | |
# | | | | |
# | | | | | 3.2
# |________|________|______ _|__ ____| _
# | | | | |
# | | | | |
# | | | | | 3.2
# | | | | | _
# === === === === ===
# | 6.0 | 6.0 | 6.0 | 6.0 |
#
model BasicBuilder -ndm 2 -ndf 3
#supports
# tag X Y
node 1 0 0
node 2 6 0
node 3 12 0
node 4 18 0
node 5 24 0
#Nodes and # mass (D+0.2L)/9.81 KN/9.81=ton
set m 0.0001
#first storey
# tag X Y
node 6 0 3.2 -mass 19.26605505 19.26605505 $m
node 7 6 3.2 -mass 14.67889908 14.67889908 0.
node 8 12 3.2 -mass 14.67889908 14.67889908 0.
node 9 18 3.2 -mass 14.67889908 14.67889908 0.
node 10 24 3.2 -mass 19.26605505 19.26605505 0.
#second storey
# tag X Y
node 11 0 6.4 -mass 19.26605505 19.26605505 0.
node 12 6 6.4 -mass 14.67889908 14.67889908 0.
node 13 12 6.4 -mass 14.67889908 14.67889908 0.
node 14 18 6.4 -mass 14.67889908 14.67889908 $m
node 15 24 6.4 -mass 19.26605505 19.26605505 0.
#roof
# tag X Y
node 16 0 9.6 -mass 16.20795107 16.20795107 0.
node 17 6 9.6 -mass 14.67889908 14.67889908 0.
node 18 12 9.6 -mass 14.67889908 14.67889908 0.
node 19 18 9.6 -mass 14.67889908 14.67889908 0.
node 20 24 9.6 -mass 16.20795107 16.20795107 0.
# node DX DY RZ
fix 1 1 1 1
fix 2 1 1 1
fix 3 1 1 1
fix 4 1 1 1
fix 5 1 1 1
# Constraint nodes in each floor
equalDOF 8 6 1 2
equalDOF 8 7 1 2
equalDOF 8 9 1 2
equalDOF 8 10 1 2
equalDOF 13 11 1 2
equalDOF 13 12 1 2
equalDOF 13 14 1 2
equalDOF 13 15 1 2
equalDOF 18 16 1 2
equalDOF 18 17 1 2
equalDOF 18 19 1 2
equalDOF 18 20 1 2
## Define beam and column property variables KN/m^2
set E 200000000.0
set fy 240000.0
set b 0.03
# tag E fy post hardening
uniaxialMaterial Steel01 1 $fy $E $b
source Wsection.tcl
# Columns sections ... H...B==> 1.H400B 2.H300B 3.H280B 4.H240 5.H220 10.H340
# tag matID d tw bf tf nfdw nftw nfbf nftf
Wsection 1 1 0.4 0.0135 0.3 0.024 20 2 5 4
Wsection 2 1 0.3 0.0110 0.3 0.019 20 2 5 4
Wsection 3 1 0.28 0.0105 0.28 0.018 20 2 5 4
Wsection 4 1 0.24 0.0100 0.24 0.017 20 2 5 4
Wsection 5 1 0.22 0.0095 0.22 0.016 20 2 5 4
Wsection 10 1 0.34 0.0120 0.30 0.0215 20 2 5 4
# Columns sections ... H...B==> 6.H400A 7.H360A 8.H320A 9.H300A
# tag matID d tw bf tf nfdw nftw nfbf nftf
Wsection 6 1 0.39 0.011 0.3 0.019 20 2 5 4
Wsection 7 1 0.35 0.010 0.3 0.0175 20 2 5 4
Wsection 8 1 0.31 0.0090 0.3 0.0155 20 2 5 4
Wsection 9 1 0.29 0.0085 0.3 0.014 20 2 5 4
# Coordinate transformation
geomTransf PDelta 1
#geomTransf Linear 1
#DEFENITION of columns
#1th storey
# tag ndI ndJ nIntPts sec transfTag
element nonlinearBeamColumn 1 1 6 5 2 1
element nonlinearBeamColumn 2 2 7 5 1 1
element nonlinearBeamColumn 3 3 8 5 10 1
element nonlinearBeamColumn 4 4 9 5 1 1
element nonlinearBeamColumn 5 5 10 5 2 1
#2nd storey
element nonlinearBeamColumn 6 6 11 5 3 1
element nonlinearBeamColumn 7 7 12 5 3 1
element nonlinearBeamColumn 8 8 13 5 3 1
element nonlinearBeamColumn 9 9 14 5 3 1
element nonlinearBeamColumn 10 10 15 5 3 1
#3th storey
element nonlinearBeamColumn 11 11 16 5 4 1
element nonlinearBeamColumn 12 12 17 5 5 1
element nonlinearBeamColumn 13 13 18 5 5 1
element nonlinearBeamColumn 14 14 19 5 5 1
element nonlinearBeamColumn 15 15 20 5 4 1
#DEFENITION of beams
# tag ndI ndJ nIntPts sec transfTag
element nonlinearBeamColumn 16 6 7 5 6 1
element nonlinearBeamColumn 17 7 8 5 7 1
element nonlinearBeamColumn 18 8 9 5 7 1
element nonlinearBeamColumn 19 9 10 5 6 1
element nonlinearBeamColumn 20 11 12 5 8 1
element nonlinearBeamColumn 21 12 13 5 8 1
element nonlinearBeamColumn 22 13 14 5 8 1
element nonlinearBeamColumn 23 14 15 5 8 1
element nonlinearBeamColumn 24 16 17 5 9 1
element nonlinearBeamColumn 25 17 18 5 9 1
element nonlinearBeamColumn 26 18 19 5 9 1
element nonlinearBeamColumn 27 19 20 5 9 1
puts "[eigen 2]"
# Constant gravity loads
pattern Plain 1 Constant {
# node FX FY MZ
load 6 0.0 -49.5 0
load 10 0.0 -49.5 0
load 11 0.0 -49.5 0
load 15 0.0 -49.5 0
load 16 0.0 -16.5 0
load 20 0.0 -16.5 0
# -ele eleTag1? -type -beamUniform Wz? <Wx> w=1.1*(D+.25L)
eleLoad -ele 16 17 18 19 -type -beamUniform -53.625
eleLoad -ele 20 21 22 23 -type -beamUniform -53.625
eleLoad -ele 24 25 26 27 -type -beamUniform -53.625
}
# Create a recorder to monitor nodal displacements
#recorder Node roof.out analyze -time -node 7 -dof 1
recorder Node -time -file node18.out -node 18 -dof 1 disp
# Create recorders to monitor section forces and deformations
# at the base of the left column
recorder Node -time -file node1.out -node 1 -dof 1 reaction
recorder Node -time -file node2.out -node 2 -dof 1 reaction
recorder Node -time -file node3.out -node 3 -dof 1 reaction
recorder Node -time -file node4.out -node 4 -dof 1 reaction
recorder Node -time -file node5.out -node 5 -dof 1 reaction
##drift and displacement
recorder Drift -file drift.out -time -iNode 2 4 6 -jNode 4 6 8 -dof 1 -perpDirn 2
recorder Node -time -file displacement.out -node 3 5 7 -dof 1 disp
#integrator LoadControl 0.1 3 0.001 1
integrator LoadControl 1
test EnergyIncr 1.0e-6 10 1
algorithm Newton
numberer Plain
constraints Plain
system BandGeneral
puts "[eigen 3]"
analysis Static
# Perform the gravity analysis
analyze 1
puts "Gravity load analysis completed"
loadConst -time 0.0
puts "[eigen 3]"
eigen valuses changes after applying gravity loads.why?
Moderators: silvia, selimgunay, Moderators
-
- Posts: 16
- Joined: Thu Jun 08, 2006 3:17 pm
- Location: University of California at San Diego
- Contact:
With PDelta transformation you take into account the stiffness variation due to the loads. Obviously the eigenvalues change.
A reference:
http://www.csiberkeley.com/Tech_Info/11.pdf
andrea
A reference:
http://www.csiberkeley.com/Tech_Info/11.pdf
andrea
Dr. Andrea Mordini
Civil Engineer, Ph.D. in Structural Mechanics
VCE - Vienna Consulting Engineers
Civil Engineer, Ph.D. in Structural Mechanics
VCE - Vienna Consulting Engineers
-
- Posts: 16
- Joined: Thu Jun 08, 2006 3:17 pm
- Location: University of California at San Diego
- Contact: