hi
I have been using a code to generate RotD
the code has been developed by Jawad Fayaz from University of California- Irvine and I downloaded It from openseespydoc site.
when I run the code an error occurs (ERROR: No ConvergenceTest yet specified). can anyone help me with this error?
here is the code:
"""
author : JAWAD FAYAZ (email: jfayaz@uci.edu) (website: https://jfayaz.github.io)
------------------------------ Instructions -------------------------------------
This code develops the RotD50 Sa and RotD100 Sa Spectra of the Bi-Directional
Ground Motion records as '.AT2' files provided in the current directory
The two directions of the ground motion record must be named as 'GM1i' and 'GM2i',
where 'i' is the ground motion number which goes from 1 to 'n', 'n' being the total
number of ground motions for which the Spectra needs to be generated. The extension
of the files must be '.AT2'
For example: If the Spectra of two ground motion records are required, 4 files with
the following names must be provided in the given 'GM' folder:
'GM11.AT2' - Ground Motion 1 in direction 1 (direction 1 can be either one of the bi-directional GM as we are rotating the ground motions it does not matter)
'GM21.AT2' - Ground Motion 1 in direction 2 (direction 2 is the other direction of the bi-directional GM)
'GM12.AT2' - Ground Motion 2 in direction 1 (direction 1 can be either one of the bi-directional GM as we are rotating the ground motions it does not matter)
'GM22.AT2' - Ground Motion 2 in direction 2 (direction 2 is the other direction of the bi-directional GM)
The Ground Motion file must be a vector file with 4 header lines.The first 3 lines can have
any content, however, the 4th header line must be written exactly as per the following example:
'NPTS= 15864, DT= 0.0050'
The 'ReadGMFile.py' can be edited accordingly for any other format
You may run this code in python IDE: 'Spyder' or any other similar IDE
Make sure you have the following python libraries installed:
os
sys
pathlib
fnmatch
shutil
IPython
pandas
numpy
matplotlib.pyplot
INPUT:
This codes provides the option to have 3 different regions of developing the Spectra of ground motions with different period intervals (discretizations)
The following inputs within the code are required:
'Path_to_openpyfiles'--> Path where the library files 'opensees.pyd' and 'LICENSE.rst' of OpenSeesPy are included (for further details go to https://openseespydoc.readthedocs.io/en ... ndows.html)
'Int_T_Reg_1' --> Period Interval for the first region of the Spectrum
'End_T_Reg_1' --> Last Period of the first region of the Spectrum (where to end the first region)
'Int_T_Reg_2' --> Period Interval for the second region of the Spectrum
'End_T_Reg_2' --> Last Period of the second region of the Spectrum (where to end the second region)
'Int_T_Reg_3' --> Period Interval for the third region of the Spectrum
'End_T_Reg_3' --> Last Period of the third region of the Spectrum (where to end the third region)
'Plot_Spectra' --> whether to plot the generated Spectra of the ground motions (options: 'Yes', 'No')
OUTPUT:
The output will be provided in a saperate 'GMi_Spectra.txt' file for each ground motion record, where 'i' denotes the number of ground motion in the same of
provided 'GM1i.AT2' and 'GM2i.AT2' files. The output files will be generated in a saperate folder 'Spectra' which will be created in the current folder
The 'GMi_Spectra.txt' file will consist of space-saperated file with:
'Periods (secs)' 'RotD50 Sa (g)' 'RotD100 Sa (g)'
%%%%% ========================================================================================================================================================================= %%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
"""
##### ================== INPUTS ================== #####
# Path where the library files 'opensees.pyd' and 'LICENSE.rst' are included (for further details go to https://openseespydoc.readthedocs.io/en ... ndows.html)
Path_to_openpyfiles = "C:/Users/Hasan/AppData/Local/Programs/Python/Python38/Lib/site-packages/openseespywin"
# For periods 0 to 'End_T_Reg_1' in an interval of 'Int_T_Reg_1'
Int_T_Reg_1 = 0.1
End_T_Reg_1 = 1
# For periods ['End_T_Reg_1'+'Int_T_Reg_2'] to 'End_T_Reg_2' in an interval of 'Int_T_Reg_2'
Int_T_Reg_2 = 0.2
End_T_Reg_2 = 2
# For periods ['End_T_Reg_2'+'Int_T_Reg_3'] to 'End_T_Reg_3' in an interval of 'Int_T_Reg_3'
Int_T_Reg_3 = 0.5
End_T_Reg_3 = 5
# Plot Spectra (options: 'Yes' or 'No')
Plot_Spectra = 'No'
##### =============== CODE BEGINS ================ #######
## Importing Libraries
import os, sys, pathlib, fnmatch
import shutil as st
from IPython import get_ipython
from openseespy.opensees import *
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import warnings
import matplotlib.cbook
warnings.filterwarnings("ignore",category=matplotlib.cbook.mplDeprecation)
wipe()
# Getting Number of Ground Motions from the GM folder
GMdir = os.getcwd()
No_of_GMs = int(len(fnmatch.filter(os.listdir(GMdir),'*.AT2'))/2)
print('\nGenerating Spectra for {} provided GMs \n\n'.format(np.round(No_of_GMs,0)))
# Initializations
DISPLACEMENTS = pd.DataFrame(columns=['uX','uY'])
GM_SPECTRA = pd.DataFrame(columns=['Period(s)','RotD50Sa(g)', 'RotD100Sa(g)'])
SDOF_RESPONSE = [[]]
GM_RESPONSE = [[]]
# Spectra Generation
for iEQ in range(1,No_of_GMs+1):
print('Generating Spectra for GM: {} ...\n'.format(np.round(iEQ,0)))
Periods = np.concatenate((list(np.arange(Int_T_Reg_1,End_T_Reg_1+Int_T_Reg_1,Int_T_Reg_1)),list(np.arange(End_T_Reg_1+Int_T_Reg_2,End_T_Reg_2+Int_T_Reg_2,Int_T_Reg_2)),list(np.arange(End_T_Reg_2+Int_T_Reg_3,End_T_Reg_3+Int_T_Reg_3,Int_T_Reg_3))),axis=0)
ii = 0
for T in Periods:
ii = ii+1
GMinter = 0
# Storing Periods
GM_SPECTRA.loc[ii-1,'Period(s)'] = T
# Setting modelbuilder
model('basic', '-ndm', 3, '-ndf', 6)
# Setting SODF Variables
g = 9.81 # value of g
L = 1.0 # Length
d = 2 # Diameter
r = d/2 # Radius
A = np.pi*(r**2) # Area
E = 1.0 # Elastic Modulus
G = 1.0 # Shear Modulus
I3 = np.pi*(r**4)/4 # Moment of Inertia (zz)
J = np.pi*(r**4)/2 # Polar Moment of Inertia
I2 = np.pi*(r**4)/4 # Moment of Inertia (yy)
K = 3*E*I3/(L**3) # Stiffness
M = K*(T**2)/4/(np.pi**2) # Mass
omega = np.sqrt(K/M) # Natural Frequency
Tn = 2*np.pi/omega # Natural Period
# Creating nodes
node(1, 0.0, 0.0, 0.0)
node(2, 0.0, 0.0, L)
# Transformation
transfTag = 1
geomTransf('Linear',transfTag,0.0,1.0,0.0)
# Setting boundary condition
fix(1, 1, 1, 1, 1, 1, 1)
# Defining materials
uniaxialMaterial("Elastic", 11, E)
# Defining elements
element("elasticBeamColumn",12,1,2,A,E,G,J,I2,I3,1)
# Defining mass
mass(2,M,M,0.0,0.0,0.0,0.0)
# Eigen Value Analysis (Verifying Period)
numEigen = 1
eigenValues = eigen(numEigen)
omega = np.sqrt(eigenValues)
T = 2*np.pi/omega
print(' Calculating Spectral Ordinate for Period = {} secs'.format(np.round(T,3)))
## Reading GM Files
exec(open("ReadGMFile.py").read()) # read in procedure Multinition
iGMinput = 'GM1'+str(iEQ)+' GM2'+str(iEQ) ;
GMinput = iGMinput.split(' ');
gmXY = {}
for i in range(0,2):
inFile = GMdir + '\\'+ GMinput+'.AT2';
dt, NumPts , gmXY = ReadGMFile()
# Storing GM Histories
gmX = gmXY[1]
gmY = gmXY[2]
gmXY_mat = np.column_stack((gmX,gmX,gmY,gmY))
# Bidirectional Uniform Earthquake ground motion (uniform acceleration input at all support nodes)
iGMfile = 'GM1'+str(iEQ)+' GM2'+str(iEQ) ;
GMfile = iGMfile.split(' ')
GMdirection = [1,1,2,2];
GMfact = [np.cos(GMinter*np.pi/180),np.sin(-GMinter*np.pi/180), np.sin(GMinter*np.pi/180), np.cos(GMinter*np.pi/180)];
IDTag = 2
loop = [1,2,3,4]
for i in loop:
# Setting time series to be passed to uniform excitation
timeSeries('Path',IDTag +i, '-dt', dt, '-values', *list(gmXY_mat[:,i-1]), '-factor', GMfact[i-1]*g)
# Creating UniformExcitation load pattern
pattern('UniformExcitation', IDTag+i, GMdirection[i-1], '-accel', IDTag+i)
# Defining Damping
# Applying Rayleigh Damping from $xDamp
# D=$alphaM*M + $betaKcurr*Kcurrent + $betaKcomm*KlastCommit + $beatKinit*$Kinitial
## xDamp = 0.05; # 5% damping ratio
## alphaM = 0.; # M-prop. damping; D = alphaM*M
## betaKcurr = 0.; # K-proportional damping; +beatKcurr*KCurrent
## betaKcomm = 2.*xDamp/omega; # K-prop. damping parameter; +betaKcomm*KlastCommitt
## betaKinit = 0.; # initial-stiffness proportional damping +beatKinit*Kini
## rayleigh(alphaM,betaKcurr,betaKinit,betaKcomm); # RAYLEIGH damping
damp = 0.05
rayleigh(0,float(2.0*damp/omega),0,0)
# Creating the analysis
wipeAnalysis() # clear previously-define analysis parameters
constraints("Penalty",1e18, 1e18) # how to handle boundary conditions
numberer("RCM") # renumber dof's to minimize band-width (optimization), if you want to
system('SparseGeneral') # how to store and solve the system of equations in the analysis
algorithm('Linear') # use Linear algorithm for linear analysis
integrator("TRBDF2") # determine the next time step for an analysis
algorithm("NewtonLineSearch") # define type of analysis: time-dependent
test('EnergyIncr',float(1.0e-6), int(100), int(0))
analysis("Transient")
# Variables (Can alter the speed of analysis)
dtAnalysis = dt
TmaxAnanlysis = dt*NumPts
tFinal = int(TmaxAnanlysis/dtAnalysis)
tCurrent = getTime()
ok = 0
time = [tCurrent]
# Initializations of response
u1 = [0.0]
u2 = [0.0]
# Performing the transient analysis (Performance is slow in this loop, can be altered by changing the parameters)
while ok == 0 and tCurrent < tFinal:
ok = analyze(1, dtAnalysis)
# if the analysis fails try initial tangent iteration
if ok != 0:
print("Iteration failed .. lets try an initial stiffness for this step")
test('NormDispIncr', 1.0e-12, 100, 0)
algorithm('ModifiedNewton', '-initial')
ok =analyze( 1, .001)
if ok == 0:
print("that worked .. back to regular newton")
test('NormDispIncr', 1.0e-12, 10 )
algorithm('Newton')
tCurrent = getTime()
time.append(tCurrent)
u1.append(nodeDisp(2,1))
u2.append(nodeDisp(2,2))
# Storing responses
DISPLACEMENTS.loc[ii-1,'uX'] = np.array(u1)
DISPLACEMENTS.loc[ii-1,'uY'] = np.array(u2)
DISP_X_Y = np.column_stack((np.array(u1),np.array(u2)))
# Rotating the Spectra (Projections)
Rot_Matrix = np.zeros((2,2))
Rot_Disp = np.zeros((180,1))
for theta in range (0,180,1):
Rot_Matrix [0,0] = np.cos(np.deg2rad(theta))
Rot_Matrix [0,1] = np.sin(np.deg2rad(-theta))
Rot_Matrix [1,0] = np.sin(np.deg2rad(theta))
Rot_Matrix [1,1] = np.cos(np.deg2rad(theta))
Rot_Disp[theta,0] = np.max(np.matmul(DISP_X_Y,Rot_Matrix)[:,0])
# Storing Spectra
Rot_Acc = np.dot(Rot_Disp,(omega**2)/g)
GM_SPECTRA.loc[ii-1,'RotD50Sa(g)'] = np.median(Rot_Acc)
GM_SPECTRA.loc[ii-1,'RotD100Sa(g)']= np.max(Rot_Acc)
wipe()
# Writing Spectra to Files
if not os.path.exists('Spectra'):
os.makedirs('Spectra')
GM_SPECTRA.to_csv('Spectra//GM'+str(iEQ)+'_Spectra.txt', sep=' ',header=True,index=False)
# Plotting Spectra
if Plot_Spectra == 'Yes':
def plot_spectra(PlotTitle,SpectraType,iGM):
axes = fig.add_subplot(1, 1, 1)
axes.plot(GM_SPECTRA['Period(s)'] , GM_SPECTRA[SpectraType] , '.-',lw=7,markersize=20, label='GM'+str(iGM))
axes.set_xlabel('Period (sec)',fontsize=30,fontweight='bold')
axes.set_ylabel(SpectraType,fontsize=30,fontweight='bold')
axes.set_title(PlotTitle,fontsize=40,fontweight='bold')
axes.tick_params(labelsize= 25)
axes.grid(True)
axes.set_xlim(0, np.ceil(max(GM_SPECTRA['Period(s)'])))
axes.set_ylim(0, np.ceil(max(GM_SPECTRA[SpectraType])))
axes.axhline(linewidth=10,color='black')
axes.axvline(linewidth=10,color='black')
axes.hold(True)
axes.legend(fontsize =30)
fig = plt.figure(1,figsize=(18,12))
plot_spectra('RotD50 Spectra','RotD50Sa(g)',iEQ)
fig = plt.figure(2,figsize=(18,12))
plot_spectra('RotD100 Spectra','RotD100Sa(g)',iEQ)
SDOF_RESPONSE.insert(iEQ-1,DISPLACEMENTS)
GM_RESPONSE.insert(iEQ-1,GM_SPECTRA)
print('\nGenerated Spectra for GM: {}\n\n'.format(np.round(iEQ,0)))
ERROR: No ConvergenceTest yet specified
Moderators: silvia, selimgunay, Moderators
Re: ERROR: No ConvergenceTest yet specified
You should contact the author
Re: ERROR: No ConvergenceTest yet specified
Define the test before the algorithm:
toalgorithm("NewtonLineSearch") # define type of analysis: time-dependent
test('EnergyIncr',float(1.0e-6), int(100), int(0))
test('EnergyIncr',float(1.0e-6), int(100), int(0))
algorithm("NewtonLineSearch") # define type of analysis: time-dependent